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Temporal Segmentation of Video Using
Frame and Histogram Space
Robert A. Joyce,Member, IEEE, and Bede Liu,Fellow, IEEE

Abstract— Two algorithms are presented for the detection of
gradual transitions in video sequences. The first is a dissolve
detection algorithm utilizing certain properties of a dissolve’s
trajectory in image-space. It is implemented both as a sim-
ple threshold-based detector, and as a parametric detector by
modelling the error properties of the extracted statistics. The
second is an algorithm to detect a wide variety of wipes based
on image histogram characteristics during such transitions. Both
algorithms operate in the compressed domain, requiring only
partial decoding of the compressed video stream. Experiments
show the algorithms perform as well as—and in some cases,
better than—full-frame methods, on a wide variety of gradual
transitions, and can operate significantly faster than real-time.

Index Terms— Compressed Video Processing, MPEG Video,
Shot Detection, Wipe Detection, Dissolve Detection, Scene Change
Detection, Gradual Transition Detection

I. I NTRODUCTION

CONTENT analysis of digital video is of central impor-
tance in the creation of indexing, browsing, and searching

mechanisms for video databases. An essential first step is
the segmentation of new streams via production cues such as
scene and shot boundaries. As much of the video will be in
compressed form, and computational expense is an important
consideration, processing of the video in the compressed
domain is desirable.

The detection of abrupt transitions (“cuts”) between shots
has been extensively studied in both the compressed and
uncompressed domains. Gradual transitions, which are more
likely to mark scene boundaries than are cuts, pose a much
more difficult problem. Such transitions can be roughly di-
vided into two classes: those that simultaneously but gradually
affect every pixel of the image, and those that abruptly affect
an evolving subset of the pixels, with the subset changing
in each frame. Over a number of frames, the cumulative
change—due to the summed gradual changes or to the union
of pixel subsets—forms the gradual shot boundary.
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The first class includes dissolve and fade-in/out effects,
and one could argue that dissolves and fades are the only
members of this class. Much work has been done on dissolve
and fade detection, particularly with the use of reduced-
resolution frames and motion vectors gathered directly from
the compressed stream [1]–[8].

What are commonly thought of as wipe effects are members
of the second class, although for compactness the term “wipe”
will herein be used to describe any transition abruptly affecting
an evolving subset of pixels. Wipes are often used in television
news and sports coverage, as well as in movies. In sports
video, for example, wipes are generally used to denote the
beginning and end of an instant replay; thus, detection of
wipes would allow an indexing system to separate replays
from live action, thereby preserving continuity in time. During
newscasts, wipe transitions often signal a change in story or
topic.

Qualitatively, wipe transitions are generally characterized by
the slow sliding in or uncovering of an image from a new shot,
while simultaneously covering up or sliding out the old shot.
At any instant during the transition, the frame contains some
of the old content, as well as some of the new. The “edge”
of the wipe—the moving spatial boundary between the old
and new shots—can be a single line or a complex pattern.
Recently, there has been a trend toward using blurred wipe
edges; attempting to detect the exact wipe edge can be difficult.
Often, the transition is generated by computer, in which case
three-dimensional projections or other special effects may
be present. On occasion, computer-generated artwork will
completely cover the image, creating an intermediate step in
the wipe’s progression.

One common method of wipe detection involves extracting
and counting edges in the image; this statistic will monoton-
ically change during a transition, from the old shot’s value
to the new shot’s value [9], [10]. This generally must be
performed on uncompressed video, and is computationally
expensive. In the compressed domain, methods have been
proposed which analyze a projection or subset of the DC
DCT coefficients, looking for progressions of abrupt pixel
changes [11]–[13]. Progressions of changes in encoder motion-
prediction decisions have also been used [14], as have progres-
sions in partial-frame histogram intersections [15]. A method
has been proposed by which the statistical characteristics
of wipe sequences are detected [16]. Finally, the Hough
transform can be used on spatially-reduced frames to detect
and characterize the style of certain types of wipes [17]. The
majority of these algorithms depend on the video producer
using only a limited amount of computer graphics or artwork,
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and assume little motion adjacent to and during the wipe.
With the prevalence of computer-generated wipes, assumptions
of sharp boundaries and simple one-directional wipe models
are likely to fail on modern video; what is needed is a
more general method, independent of the direction or style of
wipe, and independent of any reasonable amount of producer-
added effects (for instance, blurring, page-turning, shadows,
and projections).

This paper begins an explanation of and motivation for
the compressed-domain techniques used throughout; these are
presented in Section II. Section III describes a dissolve and
fade detection algorithm which, while not too different from
conventional methods, eliminates some restrictions imposed
by available dissolve detectors. A general method of detecting
transitions from the wipe class, which circumvents some of
the limitations imposed by current algorithms, is presented in
Section IV. Both the wipe and dissolve detection algorithms
can be easily modified to detect partial-frame transitions (for
example, caption appearances). The statistics computed by
both algorithms are examined in further detail in Section V.
Experimental results are described in Section VI, and conclu-
sions, as well as ideas for further study, comprise Section VII.

II. COMPRESSED DOMAIN PROCESSING

Ideally, the indexing process would be done in real-time,
either from a live (streaming) feed or a single pass of a
videotape. However, the computation time required to decode
MPEG video and perform image-processing operations on full
frames, while decreasing with progress in processor design,
remains significant1. This complexity constraint becomes even
more troublesome when considering that shot and scene de-
composition are only the first steps of the indexing process;
there is much yet to do. In addition, most sizable digital
video libraries are likely to be in compressed form, if only for
economic reasons. For these reasons, analyzing video streams
directly in the compressed domain is advantageous.

One natural technique of compressed-domain analysis is
reduced-resolution processing: using a subset of the block
DCT coefficients to reconstruct thumbnail-sized images. Of
particular interest is the construction of so-called “DC frames,”
which are comprised of the lowest-order DCT coefficients of
each block (and are therefore one eighth the size of the full
frames). For intracoded (I) frames, construction of DC frames
is trivial. Intercoded (P,B) frames require full decompression
of their reference frames for exact DC reconstruction. Instead,
rapid first-order estimation techniques are used to construct
DC frames for intercoded compressed frames [5]. If compu-
tation time is very critical, a slight speedup can be gained by
resorting to the simpler zero-order estimation techniques; the
negative impact on the final results is small. Similar methods
can be used to construct DC+2AC frames, which are formed
from the DC and two lowest-order AC coefficients of each
block. The2× 2 IDCT then required for each block is simple
to compute.

1While we will concentrate on MPEG-1 video, the techniques presented
apply equally well to other block/transform-based compression schemes.

Aside from their computational advantages, DC sequences
are more suitable for video analysis in many respects. Pri-
marily, the artifacts of MPEG compression and video noise
are significantly reduced at the lower resolution. In addition,
small amounts of camera or object motion, which dramatically
affect the registration of adjacent frames’ pixels at the full-
frame level, are obscured at such a low resolution.

Displaced frame differences (“DFD’s”), which are the pixel-
by-pixel differences between frames after any motion com-
pensation, can be computed for P frames without full de-
compression. DC DFD’s require no computation at all, as
they are just the lowest-order DCT coefficients of the residue
frame, which are available directly in the coded stream. Other
reduced-resolution DFD’s can be computed via low-order
inverse DCT’s.

Unless otherwise noted, first-order estimated DC sequences
are used in all calculations for the remainder of the paper.
For MPEG-1 sequences, the DC frames are typically44× 30
pixels in size.

III. D ISSOLVE DETECTION

At its most basic, a dissolve or fade is a time-varying
superposition of two video streams. Letfk(x, y) denote the
value of pixel(x, y) in framek of sequencef , with gk(x, y)
andhk(x, y) defined similarly. A dissolve from sequenceg to
sequenceh, lasting from framem to framen, can therefore
be described by

fk(x, y) = αkhk(x, y) + (1− αk) gk(x, y) (1)

where αk is an increasing sequence, withαm = 0 at the
beginning of the dissolve andαn = 1 at the end. It is often
assumed that the sequenceαk increases linearly, but this is not
necessarily the case; particularly artistic dissolves may have a
pause, a long lead-in time, or some other non-linearity inαk.

For the moment, we assume there is negligible motion in
the sequencesg andh. For compactness, we denote byfk the
vector formed by all the pixels of framek (the ordering is
irrelevant, as long as it is consistent). For color video, each
pixel has three dimensions in color space;fk then contains
three times as many elements as there are pixels in a frame.
Consider the trajectories formed byfb−fa andfd−fc, where
m < a < b < n andm < c < d < n. Substituting the model
in (1) yields

fd − fc = (αd − αc) (αb − αa)−1 [fb − fa] (2)

during a dissolve. Asαk is an increasing sequence,
(αd − αc) (αb − αa)−1

> 0. This condition is equivalent to
the statement that, during a dissolve, the normalized corre-
lation, ρ, between any two trajectory vectors is1. If one
considers each vectorfk as being in a frame-space, then the
video’s trajectory in this space will be a straight line during a
dissolve, as shown in Figure 1. Natural, non-dissolve motion
in a stream generally does not have this characteristic; it is
uncommon for all the pixels in the image to evolve in the same
way, frame after frame. Note that linearity in frame space is
distinct from the condition thatαk increases linearly; we make
no such assumption about the time progression of the dissolve.
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Fig. 1. Three-dimensional representation of a video sequencefk in frame-
space during a dissolve.

In order to check this condition, we are faced with four
concerns: limited memory (we cannot store all the frames),
limited computation time, noa priori knowledge of the start
or end of the dissolve, and the fact that there may be some
object or camera motion in the frame. Analysis of three nearby
frames at a time offers a good compromise among these
considerations. Using framesk − L, k, and k + L, we can
compute two length-L frame differences, where

dL
k (x, y) = fk(x, y)− fk−L(x, y) ∀x, y (3)

is thek-th difference frame, anddL
k is the corresponding vector

in frame space. The correlation, as a function ofk andL, is
then

ρ(k, L) =

〈
dL

k+L, dL
k

〉√∥∥dL
k+L

∥∥2 ∥∥dL
k

∥∥2
(4)

(where 〈·, ·〉 represents inner product). A ‘straight’ triplet of
frames is declared if the the correlation is high enough, i.e.,
if

ρ(k, L) ≥ Tcorr (5)

for an appropriate thresholdTcorr.
In order to declare a dissolve, we require that condition (5)

hold for everyk in some sequence of frames, say fromm to
n. A condition on the length of this line in frame space is also
needed; we require that

‖fn − fm‖ ≥ Tdist. (6)

The length condition is necessary because small changes (e.g.,
in frame brightness) can lead to the correlation condition being
met for an isolated triplet or two. Instead of (6), a simpler
threshold on the length in number of frames can be used, but
the frame-space length condition is more robust in eliminating
false detections.

The testing of (5) and (6) can be done sequentially, with no
knowledge of future frames beyondk + L, according to the
following algorithm:

while ( there are new frames)
if ( ρ(k, L) ≥ Tcorr)

n = k + L
if ( m not yet set)

m = k − L
else if ( ‖fn − fm‖ ≥ Tdist)

declare dissolve
else

unset m
k = k + L

end

Regarding the selection ofL, we note that the effects of
motion diminish asL → 1, but decreasingL leads to more
false alarms, as it is possible to construct a long non-straight
line in frame space which has local correlations near1. As
L is increased, computational requirements are lessened, but
it becomes more likely that outliers (from a straight line)
will be obscured by the coarse granularity of sampled frames.
SelectingL = 3, which means only the I and P frames in
many MPEG-1 streams, provides a resonable compromise:
slow motion is not destructive, and the computation time and
number of false alarms are both reasonable.

While many dissolves do indeed have little motion, this is
not universally true; any rapid object or camera motion during
the transition will prevent the frame-space linearity condition
from holding. (Local linearity might still hold though, ifL
is small.) By using DFD’s, described in Section II, instead
of the true frame differences, simple object or camera motion
can be compensated for. Unfortunately, this places a depen-
dency on how the particular MPEG encoder was designed;
to maintain some consistency among computed correlation
values, we restrict analysis to only P frames2. In addition,
much computation is eliminated, due to the ease of extracting
(DC) DFD’s. If we denote the DFD between framefk and
framefk−L as d̃L

k , the correlation calculation in (4) becomes

ρdfd(k, L) =

〈
d̃L

k+L, d̃L
k

〉
√∥∥∥d̃L

k+L

∥∥∥2 ∥∥∥d̃L
k

∥∥∥2
. (7)

A plot of this ρdfd sequence for a sample documentary clip
with two dissolves is shown in Figure 2; note the sharp
increase during the dissolve frames.

Values for Tcorr and Tdist should be set based on the
desired false alarm rate or detection accuracy. In many cases,
false alarms are not as detrimental as missed events in shot
decomposition; detection accuracy can be improved if some
false alarms are allowed. As the values of the frame-space
correlations can depend on non content-related factors such as
frame size, video noise, and compression artifacts, the mean of
the pastM values ofρdfd(k, L) is subtracted before theTcorr

comparison is made. (Subtracting this mean is equivalent to
gently high-pass filtering theρdfd sequence.) More thorough
post-processing of the correlation sequence is detailed in
Section V, and specific experimental results are presented in
Section VI.

IV. W IPE DETECTION

One can imagine many effects in which an evolving subset
of pixels changes abruptly in each frame. The simplest wipes

2This requires us to ignore two triplets per GOP, namely the PPI and PIP,
because one of the two required DFD’s cannot be reliably computed in each
case.
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Fig. 2. The DFD-based correlation sequenceρdfd(k, L) for a segment of
documentary video, withL = 3; dissolves occur during frames 115–140 and
492–516.

are those in which one sequence gradually covers or replaces
another, with no global movement of either sequence. More
complicated wipes can involve one stream “sliding” in over
another, or one “pushing” another aside. “Zoom” based wipes
can also be created in this manner, with a new stream
appearing from the center of the old one, expanding to fill
the whole frame. Finally, complex computer-generated wipes
can include page-turning effects, projections, or artistic wipe
boundaries (for a few examples, see Figure 3). One or more
frames may not even contain content from either adjacent shot;
this is particularly common in sports video, where a large
computer-generated “object” passes across the field of view
to effect a transition using two back-to-back wipes. Due to
the broad range of gradual transitions that fall within the wipe
class, a detection method tailored to a specific wipe is likely
to miss many other kinds of wipes.

As in the dissolve case, we assume a wipe transition from
sequenceg to sequenceh, from framem to framen. A simple,
overlap-based wipe can be described as

fk(x, y) = Ik(x, y)hk(x, y) + [1− Ik(x, y)] gk(x, y) (8)

wherefk is the resulting framek, andIk is either0 or 1 for
eachk, x, andy. Ik(x, y) = 0 for all x and y when k < m
(i.e., before the wipe), andIk(x, y) = 1 when k > n (i.e.,
after the wipe). In the case where one or both sequences slide
in or out of the frame, (8) becomes

fk(x, y) = Ik(x, y)hk (x + xh,k, y + yh,k)
+ [1− Ik(x, y)] gk (x + xg,k, y + yg,k) (9)

where the wipe-induced motion of the sequences is described
by xg,k, yg,k, xh,k, and yh,k. These two models are more
restrictive than one would like; they preclude the detection
of many artistic wipes, for example. Natural object motion
in video typically fits these models as well, yielding only
limited usefulness. The important information of each model
is that contained in the sequenceIk(x, y); as such, we will

Fig. 3. Sample wipe sequences from network television, showing the wide
variation possible in computer-generated effects.

concentrate on‖Ik‖. This sequence should increase from 0 to
N , the number of pixels in the image, ask increases fromm to
n. For most wipes,‖Ik‖ will increase linearly or quadratically.

One representation of a video sequence that allows us to
examine the‖Ik‖ sequence, without the restrictions of specific
wipe models, is the histogram. We denote thep-th bin of frame
fk ’s histogram asFk(p) (the number of bins,P , is a free
parameter); we will use the same vector shorthand ofFk, for
some arbitrary ordering of bins. Assuming for the moment
that each frame’s histogram is fairly uniform across different
portions of the image, the histograms during a wipe can be
expressed as

Fk(p) =
(
‖Ik‖+ EG,k(p)

N

)
Gk(p)

+
(

1− ‖Ik‖+ EH,k(p)
N

)
Hk(p), (10)

where EG,k(p) and EH,k(p) are error terms resulting from
the spatial nonuniformity of the histograms ofg and h,
respectively. Note that this histogram-based wipe model has
the same form as the frame-space model (1) for a dissolve! If
the values ofEG,k andEH,k are small and fairly constant in
k, it also meets the conditions we imposed on the coefficients
αk from the dissolve case. Specifically, the quantity

βk =
‖Ik‖+ EG,k(p)

N
(11)

will be increasing ink from 0 to 1, and

1− ‖Ik‖+ EH,k(p)
N

≈ 1− βk. (12)

Such a parallel immediately suggests a wipe detection
algorithm. As in the dissolve case, the correlation between
any two histogram difference vectors (Fb − Fa andFd − Fc)
will be 1 during an ideal wipe. Moreover, a wipe will appear
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Fig. 4. The sequenceρhist(k, L) for a segment of news video containing
two wipes. L = 1 in this case, and wipes occur in frames 197–209 and
352–364.

as a straight line in a histogram-space, where each dimension
corresponds to one bin of the histogram. (This linearity is
independent of any nonlinearity in the time progression of the
wipe.) In the same manner as the dissolve case, we define the
l-frame histogram differenceDl

k(p) as

DL
k (p) = Fk(p)− Fk−L(p) ∀p. (13)

We compute the correlation sequentially, from triplets of
frames:

ρhist(k, L) =

〈
DL

k+L, DL
k

〉√∥∥DL
k+L

∥∥2 ∥∥DL
k

∥∥2
. (14)

This value is compared to a threshold, and following the
pseudocode presented for the dissolve algorithm, the value
of (6) is computed to determine the length of the candidate
wipe; a wipe transition is declared if both thresholds are met.
Note that a condition similar to (6) could be computed in the
histogram space; we have not done so, due to the unwanted
constraint this imposes that the two adjacent shots must have
sufficiently different histograms. The sequenceρhist for a
sample stream is given in Figure 4.

As in the dissolve case,Tcorr and Tdist should be chosen
to achieve the desired weighting between detection probability
and false alarm rate. Once again, to counter the fact that the
mean value ofρhist is somewhat dependent on the type of
video and the recording/compression quality, the mean of the
last M values is subtracted before thresholding withTcorr.

Any natural change ing or h’s histograms through time (due
to motion or other effects) introduces deviation fromρhist = 1
in the same manner as motion ing or h did in the dissolve
case. AsL is decreased,Gk−Gk−L → 0 andHk−Hk−L → 0,
because theg and h histograms are very unlikely to change
abruptly (except in the case of a scene cut).

In addition, asL is decreased, the effect of error termsEG,k

andEH,k in (10) diminishes. This is due to the use of triplets:
the deviation from spatial uniformity in the histogram is only

important in the region that actually changes over the frame
interval k − L to k + L. In a wipe, the size of this region (a
vertical slice of the image, for example) vanishes asL → 0.
For these reasons, we setL = 1 from here on; this agrees with
experimental results obtained by varyingL. In cases where
the histogram non-uniformity is caused by an object’s edge
entering or exiting the region/slice of significance, the effect
onρhist will be impulsive—the straight line in histogram space
will now be piecewise linear, with some small number of
vertices.

Equation (10) makes a computational assumption: the num-
ber of pixels in any histogram must be an integer, yet the
coefficientβk may be such that the equation requires a non-
integral number of pixels in a particular bin. This quantization
error, if significant, can reduce the correlation among the
adjacent pair of vectors in a triplet. The error can be reduced
by using fewer histogram bins, as well as by increasing the
spatial resolution at which one operates (using a low resolution
or a large number of bins would force very small quantities
of pixels into many bins, making any quantization errors in
the intermediate frame of a triplet more significant). For this
reason, we perform the histograms on DC+2AC frames and
use 2 to 4 histogram bins per color dimension (8–64 total).

While better characterizing these data-dependent quantiza-
tion and histogram non-uniformity errors remains an open
problem, their effects onρhist can be reduced by low-pass
filtering or otherwise post-processing the resulting correla-
tion sequence (the assumption here being that the errors in
ρhist(k, L) are approximately independent ink). The gen-
erally impulsive errors due toEG,k and EH,k suggest the
use of a median filter (or, more generally, annth-largest
filter), which while nonlinear, does have a sufficiently low-
pass characteristic to help with the quantization noise. (As
an added benefit, low-pass filtering helps alleviate the time-
varying histogram distortions that MPEG compression and
video noise can introduce.)

One issue has not yet been addressed: can natural mo-
tion in video have this linear histogram-space characteristic?
Pathologically-structured object motion into or out of a frame
can cause a straight line in the histogram-space, as can panning
the camera if the image contents and histograms change
radically during the pan. Experimentally, the number of false
alarms attributed to object motion has been shown to be fairly
small in natural video, provided the image histogram does not
change radically during pans. False detections due to panning
can only be eliminated at the expense of missing “push” type
wipes (which are arguably a type of panning). This can be done
by computing the temporal variance of each macroblock’s
motion vectors—low variance corresponds to constant motion
in some direction, through time. In this case, a wipe is declared
only if there are enough macroblocks with high temporal
variance over the period of the candidate wipe. False alarms
could be further reduced by adding additional constraints; one
example is requiring the ratio of

∥∥DL
k

∥∥ to
∥∥DL

k+L

∥∥ to be either
constant or linear.

In practice, we find that dissolves are often falsely detected
as wipes by our algorithm. A dissolve does not have the
linearity property in histogram space; rather, the histogram
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Fig. 5. Triplet correlation valuesρdfd for dissolve (solid line) and non-
dissolve (dashed line) segments. The sample variance for the dissolve seg-
ments is 0.0406; for the non-dissolve segments, 0.0387.

of the old shot is progressively shifted, bin by bin, toward
all pixels being in the “black” bin; the new shot is corre-
spondingly shifted binwise from black to its final histogram.
However, if the shots’ histograms are fairly continuous from
bin to bin (i.e., there are no spikes in particular bins, while
other bins are nearly empty), then the dissolve can masquerade
as a linear change in histogram space. This is particularly a
problem when the number of bins is small; spikes are very
unlikely when there are only a few bins. The simplest solution
is to cascade the transition detectors: only try to detect wipes
in areas previously declared not to be dissolves. While this
introduces a two-level detection dependency—dissolve misses
will contribute to wipe false alarms—the result is well worth
it.

V. A NALYSIS OF THE CORRELATION STATISTIC

Given that the detection algorithms introduced in Sec-
tions III and IV are so similar once the correlation statistics
are computed, it is useful to study theρ sequences’ statistics.
Any information gained can be used to derive a more optimal
(yet computationally expensive) detector.

Figure 5 shows the distributions ofρdfd values for 13
minutes of video, separated into dissolve and non-dissolve
segments (after filtering out cuts); Figure 6 is the wipe case.
The overlap in densities is not as bothersome as it might
appear, because detection is done on variable-length sets of
frame triplets (using the algorithm presented in Section III),
not on individual triplets.

One interpretation of the distributions, particularly those
of ρdfd, is that of a signal+noise detection problem, where
the signal of interest (denoteds(k)) is a binary indicator of
whether there is a transition during the triplet. (In the wipe
case, the clipping of the values to±1 causes the noise distri-
bution to not be independent ofs(k); this could be alleviated
by more sophisticated detection-theoretic techniques.) If we
subtracts(k) from ρdfd(k), we find the measurement error,
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Fig. 6. Triplet histogram correlation valuesρhist for wipe (solid line) and
non-wipe (dashed line) segments. The sample variance for the wipe segments
is 0.1386; for the non-wipe segments, 0.2175.
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Fig. 7. ρdfd “noise”, after the dissolve indicator signals(k) is subtracted.

due to motion, compression, etc., is nearly an ideal Gaussian
process with sample variance 0.0387 (Figure 7). This process
n(k), wheren(k) = ρdfd(k) − s(k), is not white noise—its
power spectrum is tilted toward DC—but is fairly independent
of s(k). (The coarseness of Figure 5’s distribution within the
dissolve region is due to the relatively small number of triplets
in it.)

The length of the transition is unknown during the detection
process, yet we would like to take advantage of the inter-
dependence of thes(k) indicator values; this can be done
using a parametric detector, which averages over some given
distribution of test signals. In this case, the parameter is the
transition length; an estimated distribution of dissolve lengths,
measured from 95 transitions, is shown in Figure 8. We call
this PMFw(m). Note that, even within the framework of the
simple detector presented in Section III, this distribution could
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Fig. 8. Distribution of dissolve transition lengths, measured from 95
dissolves. Some values are interpolated from neighboring samples.

be used to eliminate inordinately short or long false detections.
Optimum parametric detectors in non-i.i.d. Gaussian noise

are well known [18]. Such detectors by necessity work on
blocks of input data, where the block in our case must be
longer than the support of the parameter’s PMF. Denote this
block lengthK; w(m) = 0 for m > K. In order to make each
block’s noise statistics consistent, we require that blocks begin
at a GOP boundary; otherwise, we have a non-stationary noise
source as the blocks’ starting points shift through one GOP.
Block l therefore contains time indices (frames)lG through
lG + K − 1, whereG is the length of a GOP.

We begin by settingµ0 to be the (estimated) mean of the
ρdfd values when no transition is present;µ1 is the mean during
dissolves and fades. Denote byR(l) the column vector of
measurements formed byρdfd(k)−µ0, wherelG ≤ k ≤ lG+
K−1. We then construct a parameterized set ofK-length test
signal vectors,S(p, q), 0 ≤ p ≤ G − 1 and 1 ≤ q ≤ K − p,
whereG is the length of a GOP:

S(p, q) = [0 · · · 0︸ ︷︷ ︸
p

µ · · ·µ︸ ︷︷ ︸
q

0 · · · 0]T (15)

where µ = µ1 − µ0. Essentially,S contains every possible
transition length of interest, with starting points anywhere
within the first GOP (starting points within later GOP’s will
be detected in subsequent blocks’ tests). The stationary block-
based problem can then expressed asR(l) = N(l)+S(p, q) for
somep and q. The densityw(m) must mapped intoW (p, q)
according to the length of the transition tested inS(p, q),
giving3 W (p, q) = w(q).

As the noise sequencen(k) is not i.i.d., neither is the noise
vectorN(l), so both the received signal blocksR(l) and the
test signal vectorsS(p, q) must be prewhitened; denote the
whitened vectors̄R(l) andS̄(p, q), respectively (the whitening

3If certain triplets are skipped, such as the GOP boundary triplets mentioned
in Section III, this equation must be modified to account for the non-constant
time increments. This complication is ignored for clarity’s sake in the paper.
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Fig. 9. Dissolve likelihood functionL(l), expressed in terms of the frame
numbers beginning each block of tripletsl; note the logarithmic scale. The
MPEG video stream is the same as in Fig. 2.

can be done by estimating the covariance matrixΣN and
multiplying by one of its Cholesky factors) [18].

Given the set of̄S vectors, the block PMFW (p, q), and the
prewhitening matrix (C−1), the transition likelihood function
can be calculated for each block of correlationsR(l) as
follows:

L(l) =
∑
p,q

W (p, q) exp
[(

S̄T (p, q)C−1R(l)
)
− 1

2
(
S̄T (p, q)S̄(p, q)

)]
(16)

A sample plot ofL(l) in Figure 9 shows that this ap-
proach extracts dissolves quite well from theρdfd sequence.
A histogram ofL(l) for dissolve and non-dissolve segments
is shown in Figure 10 (note the log scale); when compared to
Figure 5, the improvement is clear. As argued in Section III, it
is also necessary to test theL2 length of a candidate dissolve
in frame space before declaring a transition. Specifically, a
dissolve transition is declared if both the following inequalities
hold:

log10L(l) > TL

and ‖flt+Q−1 − flt‖ ≥ Tdist, (17)

where Q is the largest term (over values ofq) in the sum
(16). In practice, transitions often span multiple GOPs, so
that log10L(l) > TL for two or more consecutivel values; in
such cases, we declare the frames corresponding to the largest
L(l) value as the dissolve transition. Given our “on-then-off”
prototype sequencesS(p, q), the (locally) largestL(l) during
a dissolve is generally the first one.

Recall that, in order to gain the stationarity required to
make this parametric detector reasonable, we dropped the
temporal resolution of the detector to the length of a GOP by
using blocks ofρdfd values. If a greater temporal resolution is
required, the largest term of the sum in (16) can be used as an
estimate of the parametersp and q best fitting the transition;
p andp+q give the exact start and ending frames. Section VI
shows some results of this more complex detection algorithm.
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This parametric detection structure could also be useful for
the more general case of gradual transition detection, where
some statistic is computed per frame (or set of frames) and the
probability density of transition lengths is known or estimated,
provided that the “noise” in measurements is approximately
Gaussian and, more crucially, independent ofs(k). As can be
seen in Figure 6, the noise inρhist is highly dependent on
s(k) (and is not Gaussian); applying the parametric detector
unaltered indeed yields poor results. In the absence of tractable
independent noise models, the only way to improve detection
with ρhist is to compare sample densities to the two in
Figure 6. Such a comparison is likely to be problematic, as
the number of samples within a given block is small (and
there is no way to refine the temporal resolution beyond
the block level).ρhist could certainly benefit from further
analysis, however; it is possible for example that some neural
network or adaptive filter structure exists which will improve
the results.

VI. EXPERIMENTAL RESULTS

Each algorithm was tested with “natural” television and film
footage, digitized from VHS tape sources with a hardware
MPEG-1 encoder. The resulting video quality is hardly perfect,
making for a good workout of each transition detector. Each
test stream was digitized at a resolution of352 × 240 and
a frame rate of 29.97 fps. The test sets consisted of news
video from different networks, documentary footage, and other
material. All computation was performed on a 350 MHz Sun
workstation.

A. Dissolve Detection with Simple Detector

A thirteen minute set of video was used as a “training” set,
on which parameter values were selected. The training set’s
23 700 frames contained 59 dissolves, 115 cuts, and 6 wipes,
as well as some significant object and camera motion. Most
of the dissolves were clearly visible, but three were between

images so similar that a casual human viewer likely would
not notice the transition. The dissolves ranged in length from
12 to 65 frames, and a number of the transitions contained
motion of some sort.

Testing yielded good results withTcorr = 0.15, after the
mean of the past 125 values was subtracted. (Depending on the
video, the effectiveTcorr was between 0.4 and 0.8.)Tdist =
55000 (normalized to the number of macroblocks per frame)
and at least 3 successive above-threshold triplets were required
in order to declare a dissolve. With these values, 52 out of
the 59 dissolves were properly detected, with 24 false alarms
(a rate of one per 2633 frames). Different thresholds can be
selected to yield different detection probability versus false
alarm tradeoffs. In most cases, the detector correctly identified
the locations of the transition start and end to within four
frames (in ignoring B frames, the theoretical best accuracy is
three frames).

These results confirm that frame-space correlation is a
reasonable statistic to use for dissolve detection, and that using
DFD’s is an effective way to combat the errors in correlation
introduced by shot motion. By visual inspection ofρdfd(k)
plots, one can generally pick out all of the dissolves (even
the ones that are missed); this leads us to believe that a more
sophisticated detector could produce better results using the
sameρdfd sequence. Results for such a detector, that described
in Section V, are presented in the next sub-section.

Including the overhead due to DC frame extraction, our
algorithm processed video at about 170 frames per second.
In fact, about 95% of the processing time is spent parsing
the MPEG stream and calculating the DC frames; once the
DC frame is available, our algorithm takes only an additional
0.3 ms/frame on the test machine. Speed in parsing could
likely be improved through better optimization of our partial
MPEG decoder.

B. Dissolve Detection via Parametric Detector

Once theρdfd(k) sequence is computed, the detector out-
lined in Section V can be applied as an alternative to the
simple detector. Using the same 23 700-frame test sequence,
TL = 0.1, and Tdist = 55000, the parametric detector
correctly finds 53 out of 56 dissolves, with 12 false alarms4. Of
the three missed dissolves, one falls at the very end of a GOP
and is short enough to not affect any DFD’s; another overlaps
slightly with a wipe transition. The final missed transition is
likely due to unfortunate motion-compensation decisions on
the part of the encoder, such that the DFD’s did not suggest
gradual changes in each pixel. Seven of the 12 false alarms
are due to cuts, which could be eliminated if a cascaded
“cut-dissolve-wipe” detector were implemented; three more
are semantically “dissolve-like” operations, such as captions
or computer-graphic effects fading away. The total number of
false alarms, if one discounts those due to cuts and dissolve-
like effects, is 2 per 13 minutes of video.

4The total number of dissolves is 56, not 59 as in the previous test, because
3 of the dissolves occur withinK frames of the end of a stream, thus are
never properly tested against theS(p, q) sample vectors.
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Fig. 11. ROC plot for the parametric dissolve detection method on a 13
minute (23 700 frame) television video sequence. The false alarm rate is the
number of false detections divided by the total sequence length; caption fades
and similar effects, when detected, were counted as false alarms.

At the expense of a higher false alarm rate, the detection
probability can be pushed up to 0.982; 31 false alarms are
produced in this case. Discounting caption fades and cuts,
the false alarm count falls to 15 (slightly more than one per
minute). Different detection/false alarm tradeoffs are possible;
Figure 11 shows the raw false alarm rate corresponding to a
number of detection probabilities.

An alternative quality measure is to find the maximum
achievableQ = (recall× precision) value, where recall is the
detection probability, and precision is the number of correct
detections divided by the total number of detections (correct
or not). A perfect detector is one withQ = 1. (In practical
applications, the quantity of false alarms is not as critical
as the weighting given to them in theQ measure defined
here, but this metric is a reasonable basis for comparison.)
Automated detection and false alarm counting techniques are
used to iteratively find the maximumQ for the parametric
detector; the maximum, 0.8395, occurs whenTL = 1.5 and
Tdist = 67000, yielding a detection probability of 0.891 and
a false alarm rate of 0.228 per minute. TheQ values over a
small range ofTL andTdist are shown in Figure 12.

The parametric detector was also tested on longer streams,
a total of 23 additional minutes; in addition to news and
documentary footage, the longer streams contained a number
of commercials. Blindly usingTL = 0.1 and Tdist = 55000,
108 out of 149 dissolves are detected, with 36 false alarms
(1.57 per minute). Discounting false alarms due to cuts and
caption fades, the number drops to 24 (1.04 per minute). If
necessary, further processing can be done to cut the number of
false alarms (for example, requiring each triplet’s frame space
vectors have at least a certainL2 length during a dissolve, or
utilizing other statistical properties dissolve transitions must
have). Most of the missed detections occur during the commer-
cial segments, where large numbers of dissolves occur right
after one another (often, with very few non-dissolve frames
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Fig. 12. recall× precision for the parametric dissolve detector, over range
of TL and Tdist; the maximum, 0.8395, occurs atTL = 1.5 and Tdist =
67000.

in between). In fact, as designed, our parametric detector will
not detect more than one transition withinK frames (which
alone accounts for 10 misses); by adding more complicated
1/0 sequences to the test setS(p, q), these could be detected
at some computational expense. (One could make an argument
that the short non-dissolve segments in cases like this are
not “shots” in the same sense as those in non-commercial
segments.)

In most cases, within each test segment, the false alarms
have lower likelihood function values than the real transitions
(yet still above threshold); very few non-transition regions
induce higher likelihood function values (16) than the smallest
dissolve segment’s value. The cutoff region inTL varies
somewhat by stream, generally according to the content and
the MPEG encoder. (This variation is significantly less than
the stream-dependent variation in the simple detector’s optimal
Tcorr.) One way to both address this issue and to provide the
user with more control over the coarseness of the temporal
segmentation is to have a presentation-time control ofTL. The
user would increase theTL “knob” for coarser segmentation
(avoiding caption fades, etc), and decrease it to see the less
dramatic gradual transitions (for instance, those involving only
a portion of the screen). This operation would require efficient
storage of theL(l) sequence, and fairly rapid threshold testing
and presentation, as the threshold would be unknown at the
time of analysis.

When the largest term of the sum in (16) is examined as
suggested at the end of Section V, the temporal accuracy of
the derived start and stop points for each dissolve is generally
better than 4 frames. Given that the B frames are ignored, it
is impossible to be more accurate than 3 frames on average
with our test streams.

As most of the computation time is spent extracting DC
frames and DFD’s, the increased computational burden of this
detector is minimal (on the order ofK additional multiply-
adds per GOP).

Applying the parametric detector to other dissolve detection
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techniques is of interest as future work. Such a test—using the
alternative statistics extracted from the raw video stream, then
the same parametric detector—would be a fairer comparison
of our scheme with existing algorithms than would be a simple
test with empirically-determined absolute thresholds. The test
would then “factor out” the effects of threshold selection,
comparing only the underlying dissolve models and extraction
of dissolve-related statistics.

C. Wipe Detection

In testing the wipe algorithm, the training video set was
augmented by short clips with artificial wipes (between TV
news shots) created with Adobe Premiere 4.2.1. Forty test
clips, with varying parameters and styles of wipes, were
created. The first shot of each clip contains mild object motion,
and the second shot of each is a slow zoom; neither shot is
motionless during the wipe. The combined length was 42 100
frames, or 23.5 minutes.

Sixty out of 62 wipes were detected, with 35 false alarms,
when using the parametersTcorr = 0.25 (after the running
mean was subtracted),Tdist = 61000, and 2 histogram bins
per color dimension (for a total of 8 bins). The misses
were mainly due to the adjacent shots having very similar
histograms: one example is a wipe between two close-up views
of a basketball play, having very similar histograms; except for
its white boundary, the transition was barely visible to the eye.
Most of the false alarms were due to close-up panning during
a tennis segment, where the histograms changed wildly.

Using the same parameter set, the algorithm was tested on
a feature-length (135.5 minute) movie containing 28 wipes
of varying styles, along with significant motion and special
effects. 14 of these wipes were detected, with a false alarm
rate of 4.0 per minute. Again, most of the false alarms
were due to rapid camera motion in action sequences. The
wipes that were not detected were ones with very broad
borders, within which the two images were blurred together;
in this region, the histograms will not be linearly combined
(some of the transitions were midway between a wipe and a
dissolve). Naturally, the results will improve if the parameters
are tailored to this particular stream, and different detection
versus false alarm tradeoffs can be reached.

The wipe algorithm requires about 2.9 ms/frame of com-
putation time; when added to the 18.1 ms/frame required
to extract the DC+2AC frames, the algorithm runs at a rate
of nearly 48 frames per second. If the dissolve algorithm is
cascaded with the wipe algorithm, the overall processing speed
is 46 frames per second.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we have presented a novel approach to the
detection of gradual transitions in compressed video streams.
The gradual transitions are grouped into two categories: those
that affect every pixel simultaneously, but only by a small
amount in each frame, and those that affect the pixels in some
sequence, each pixel being changed abruptly. Dissolves and
fades are members of the former class, and an algorithm to
detect their presence is proposed based on their properties in a
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Fig. 13. ROC plot for our wipe detection algorithm over 23.5 minutes (42147
frames) of video, including some synthetic wipes. The false alarm rate is the
number of false detections divided by the sequence length.

reduced-resolution, motion-compensated, frame space. Wipes
and related computer effects are members of the latter class,
and parallels are drawn with the dissolve case to develop a
detection algorithm using histogram-space properties. Both
algorithms have very good detection performance and run
quickly enough to enable analysis of real-time streaming
video (with ample headroom to allow further processing).
Performance is improved, at least in the dissolve case, by
employing a more sophisticated detector based on the same
extracted statistics.

The algorithms described above can also be extended to
the detection of partial-frame gradual transitions: the appear-
ance of captions, graphic effects, or other spatially localized
events. The correlations and histograms would be taken over
the region of interest, and any time they meet the required
thresholds, the same tests would be performed on the re-
mainder of the frame, to ensure that it doesnot meet the
thresholds (thereby confirming a partial frame transition). In
the dissolve algorithm, a frame of correlations—in this case,
taken pixelwise in color space—can even be constructed to
visualize which regions best meet the dissolve model.

Comparison of our dissolve and wipe detection algorithms
with others’ methodson the same streamswould be useful
to the research community. Each algorithm’s parameters and
thresholds would need to be similarly optimized (or similarly
not optimized) for the data set, which should contain a
wide variety of video material. Further, a method is needed
for characterizing thresholds’ dependence on video sources.
Use of our parametric detector may be helpful in factoring
out the varied thresholding techniques employed by existing
algorithms.

Histogram- and frame-space trajectories of video streams
potentially hold significantly more information than the simple
presence or absence of a line reveals. We are exploring exactly
what information can be gleaned from joint study of these
trajectories, possibly with the aid of additional cues, such as



JOYCE AND LIU: TEMPORAL SEGMENTATION OF VIDEO USING FRAME AND HISTOGRAM SPACE 11

audio, motion vectors, or other available data. By perform-
ing joint processing, with all available tracks (audio, video,
and data), high-level content information can be heuristically
inferred from “mid-level” statistics such as transition detec-
tions [19]. Segments of news broadcasts could be identified,
voiceovers or interviews detected, and important replays from
a sports event could be extracted, as just a few examples.
With this high-level information, the stream can be inserted
appropriately into a browseable or searchable database.
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