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Temporal Segmentation of Video Using
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Abstract—Two algorithms are presented for the detection of  The first class includes dissolve and fade-in/out effects,
gradual transitions in video sequences. The first is a dissolve and one could argue that dissolves and fades are the only
detection algorithm utilizing certain properties of a dissolve's  ampers of this class. Much work has been done on dissolve
trajectory in image-space. It is implemented both as a sim- . . .
ple threshold-based detector, and as a parametric detector by and fqde detection, parugularly with the use O_f reduced-
modelling the error properties of the extracted statistics. The resolution frames and motion vectors gathered directly from
second is an algorithm to detect a wide variety of wipes based the compressed stream [1]-[8].
on image histogram characteristics during such transitions. Both  \What are commonly thought of as wipe effects are members
algorithms operate in the compressed domain, requiring only f the second class, although for compactness the term “wipe”
partial decoding of the compressed video stream. Experiments . . ; o .
show the algorithms perform as well as—and in some cases,W'" here|_n be used to dgscnbe any transition abrup;ly affeqtl_ng
better than—full-rame methods, on a wide variety of gradual an evolving subset of pixels. Wipes are often used in television

transitions, and can operate significantly faster than real-time. news and sports coverage, as well as in movies. In sports

Index Terms—Compressed Video Processing, MPEG Video, video, for example, wipes are generally used to denote the

Shot Detection, Wipe Detection, Dissolve Detection, Scene Changd€ginning and end of an instant replay; thus, detection of
Detection, Gradual Transition Detection wipes would allow an indexing system to separate replays

from live action, thereby preserving continuity in time. During

newscasts, wipe transitions often signal a change in story or
I. INTRODUCTION topic.

ONTENT analysis of digital video is of central impor- Qualitati_ve_:ly, wipe transitions are generally characterized by
C tance in the creation of indexing, browsing, and searchifge Slow sliding in or uncovering of an image from a new shot,
mechanisms for video databases. An essential first stepdll€ Simultaneously covering up or sliding out the old shot.
the segmentation of new streams via production cues suchfi&nY instant during the transition, the frame contains some
scene and shot boundaries. As much of the video will be @ the old content, as well as some of the new. The “edge”
compressed form, and computational expense is an importdhth® wipe—the moving spatial boundary between the old

consideration, processing of the video in the compressg@d nNew shots—can be a single line or a complex pattern.
domain is desirable. Recently, there has been a trend toward using blurred wipe

The detection of abrupt transitions (“cuts”) between Sho%dges; attempting to detect the exact wipe edge can be difficult.

has been extensively studied in both the compressed faen, the transition is generated by computer, in which case

uncompressed domains. Gradual transitions, which are m éee-dlmensmnal prOchtlons or other special effects may
likely to mark scene boundaries than are cuts, pose a m present. On occasion, computer-generated artwork will

more difficult problem. Such transitions can be roughly df;ompl_etely cover th_e image, creating an intermediate step in
vided into two classes: those that simultaneously but gradua'i Wipes progressmr)]n.d f wine d ion invol .
affect every pixel of the image, and those that abruptly affect ON€ common method of wipe detection involves extracting

an evolving subset of the pixels, with the subset changi d counting edges in the image; this statistic will monoton-
in each frame. Over a number of frames. the cumulatii ally change during a transition, from the old shot’s value

change—due to the summed gradual changes or to the un'i?)nthe new shots value [9], [1_0]' This ge_:nerally mus_t be
of pixel subsets—forms the gradual shot boundary. performed on uncompressed video, and is computationally
expensive. In the compressed domain, methods have been
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and assume little motion adjacent to and during the wipe.Aside from their computational advantages, DC sequences
With the prevalence of computer-generated wipes, assumpti@ans more suitable for video analysis in many respects. Pri-
of sharp boundaries and simple one-directional wipe modefsrily, the artifacts of MPEG compression and video noise
are likely to fail on modern video; what is needed is are significantly reduced at the lower resolution. In addition,
more general method, independent of the direction or style @hall amounts of camera or object motion, which dramatically
wipe, and independent of any reasonable amount of producaffect the registration of adjacent frames’ pixels at the full-
added effects (for instance, blurring, page-turning, shadovisgme level, are obscured at such a low resolution.
and projections). Displaced frame differences (“DFD’s"), which are the pixel-
This paper begins an explanation of and motivation fday-pixel differences between frames after any motion com-
the compressed-domain techniques used throughout; theseparesation, can be computed for P frames without full de-
presented in Section Il. Section Ill describes a dissolve andmpression. DC DFD’s require no computation at all, as
fade detection algorithm which, while not too different fronmthey are just the lowest-order DCT coefficients of the residue
conventional methods, eliminates some restrictions imposk@me, which are available directly in the coded stream. Other
by available dissolve detectors. A general method of detectirefuced-resolution DFD’s can be computed via low-order
transitions from the wipe class, which circumvents some ofverse DCT's.
the limitations imposed by current algorithms, is presented inUnless otherwise noted, first-order estimated DC sequences
Section IV. Both the wipe and dissolve detection algorithnmese used in all calculations for the remainder of the paper.
can be easily modified to detect partial-frame transitions (féilor MPEG-1 sequences, the DC frames are typicédlyk 30
example, caption appearances). The statistics computed pixels in size.
both algorithms are examined in further detail in Section V.
Experimental results are described in Section VI, and conclu- I1l. DISSOLVE DETECTION

sions, as well as ideas for further study, comprise Section VII.At its most basic, a dissolve or fade is a time-varying

superposition of two video streams. Lét(z,y) denote the
II. COMPRESSED DOMAIN PROCESSING value of pixel(z,y) in frame k of sequencef, with g, (z,y)
andhy(z,y) defined similarly. A dissolve from sequengdo

Ideally, the indexing process would be done in rea"“”‘%equenceh, lasting from framem to framen, can therefore
either from a live (streaming) feed or a single pass of & jescribed by

videotape. However, the computation time required to decode

MPEG video and perform image-processing operations on full fe(z,y) = arhi(x,y) + (1 — ag) gr(z,y) Q)
frames, while decreasing with progress in processor desi
remains significart This complexity constraint becomes eve

more troublesome when considering that shot and scene ~umed that the sequenceincreases linearlv. but this is not
composition are only the first steps of the indexing proces 3 quence Y

there is much yet to do. In addition, most sizable digitaﬂécessaﬂly the case; particularly artistic dissolves may have a

video libraries are likely to be in compressed form, if only fopPause. a long lead-in time, or some other non-linearityin

. . . or the moment, we assume there is negligible motion in
economic reasons. For these reasons, analyzing video streﬁ.'nfs glig

directly in the compressed domain is advantageous. € sequenceg andh. For compactness, we denote fiythe

. . ._vector formed by all the pixels of framk (the ordering is
One natural technique of compressed-domain analysis. IS L : i
. Lo irrelevant, as long as it is consistent). For color video, each
reduced-resolution processing: using a subset of the block ; : : ) :
]Lxel has three dimensions in color spagg;then contains

DCT coefficients to reconstruct thumbnail-sized images. (ﬁl . ) .
. . . . w ree times as many elements as there are pixels in a frame.
particular interest is the construction of so-called “DC frames

which are comprised of the lowest-order DCT coefficients cgonsmer;he trajefjtones formded bfyfsf “ba,?td {.df{if]’ whe:je |
each block (and are therefore one eighth the size of the fUf <1 “ '<Id< nandm < ¢ < d-<mn. SUbSHULng the mode
frames). For intracoded (I) frames, construction of DC framés (1) yields
is trivial. Intercoded (P,B) frames require full decompression fa—fo= (g — o) (ap — )" [fo — fal 2

of their reference frames for exact DC reconstruction. Instead, ] ] ) ]

rapid first-order estimation techniques are used to constr@&ting a d|ssolve;1As @ 1S an Increasing sequence,
DC frames for intercoded compressed frames [5]. If comp{fta — @) (@ — @a) > 0. This condition is equivalent to
tation time is very critical, a slight speedup can be gained ltﬂye statement that, during a d|§solve, the normalized corre-
resorting to the simpler zero-order estimation techniques; tiion, p, between any two trajectory vectors is If one
negative impact on the final results is small. Similar metho@§nsiders each vectfi, as being in a frame-space, then the
can be used to construct DC+2AC frames, which are form¥fl€0’s trajectory in this space will be a straight line during a
from the DC and two lowest-order AC coefficients of eacHissolve, as shown in Figure 1. Natural, non-dissolve motion

block. The2 x 2 IDCT then required for each block is simpleln @ Stream generally does not have this characteristic; it is
to compute. uncommon for all the pixels in the image to evolve in the same

way, frame after frame. Note that linearity in frame space is
1while we will concentrate on MPEG-1 video, the techniques presenté’dSt'nCt from the (_:Ond't'on thakk_mcreases I'n.early; b m_ake
apply equally well to other block/transform-based compression schemes. N0 such assumption about the time progression of the dissolve.

quﬁere ay IS an increasing sequence, with, = 0 at the
nginning of the dissolve and,, = 1 at the end. It is often
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Pixel K intensi .
v declare dissolve

else
/‘» dissolve unset m
k=k+L
J /rh end

Regarding the selection af, we note that the effects of
Pixel Jintensity  motion diminish asl. — 1, but decreasing. leads to more
false alarms, as it is possible to construct a long non-straight
line in frame space which has local correlations neaAs
L is increased, computational requirements are lessened, but
Pixel L intensity it becomes more likely that outliers (from a straight line)
Fig. 1. Three-dimensional representation of a video sequ¢pda frame- will be,Obscured by t,he coarse granularity of sampled frames'
space during a dissolve. SelectingL = 3, which means only the | and P frames in
many MPEG-1 streams, provides a resonable compromise:

d heck thi giti taced with f slow motion is not destructive, and the computation time and
In order to check this condition, we are faced with foup, \per of false alarms are both reasonable.

concemns: limited memory (we cannot store all the frames),Wh”e many dissolves do indeed have little motion, this is

limited computa_tlon time, na priori knowledge of the start not universally true; any rapid object or camera motion during
or _end of the d'SSOIV.e' Z.ind the fact that thgre may be SO transition will prevent the frame-space linearity condition
object or camera motion in the frame.AnaIys!s of three neart%m holding. (Local linearity might still hold though, if
fram‘?s at_a time _offers a good compromise among th“3‘1§esmall.) By using DFD’s, described in Section Il, instead
considerations. Using framd§— L, k, andk + L, we can of the true frame differences, simple object or camera motion
compute two lengtt frame differences, where can be compensated for. Unfortunately, this places a depen-
db(z,y) = fr(z,y) — fr_r(z,y) Y,y (3) dency on how the particular MPEG encoder was designed;
to maintain some consistency among computed correlation
values, we restrict analysis to only P frarhetn addition,
much computation is eliminated, due to the ease of extracting

yd

is thek-th difference frame, and! is the corresponding vector
in frame space. The correlation, as a functionkadnd L, is

then <d£+udﬁ> (DC) DFD’s. If we denote the DFD between franfg and
p(k, L) = — (4) frame f,_; asdl, the correlation calculation in (4) becomes
Hdk—O—LH HdkH <dL £L>
. i ‘straight’ tri k+L> %k
(where (-, -) represents inner product). A ‘straight’ triplet of paga(le, L) = @)

frames is declared if the the correlation is high enough, i.e., H&L H2 H‘iLH2
if k+L k
pk, L) 2 Teorr ®) A plot of this pgq sequence for a sample documentary clip
for an appropriate threshold,,,,.. with two dissolves is shown in Figure 2; note the sharp
In order to declare a dissolve, we require that condition (%)crease during the dissolve frames.
hold for everyk in some sequence of frames, say framto Values for T..,., and Ty should be set based on the
n. A condition on the length of this line in frame space is alsdesired false alarm rate or detection accuracy. In many cases,
needed; we require that false alarms are not as detrimental as missed events in shot
1 = Fonll > Tusst. 6) decomposition; detection accuracy can be improved if some
- false alarms are allowed. As the values of the frame-space
The length condition is necessary because small changes (&@rrelations can depend on non content-related factors such as
in frame brightness) can lead to the correlation condition beifgime size, video noise, and compression artifacts, the mean of
met for an isolated triplet or two. Instead of (6), a simplehe pastM values ofpgs(k, L) is subtracted before tHE.,,.,
threshold on the length in number of frames can be used, gmparison is made. (Subtracting this mean is equivalent to
the frame-space length condition is more robust in eliminatingntly high-pass filtering the., sequence.) More thorough
false detections. post-processing of the correlation sequence is detailed in

The testing of (5) and (6) can be done sequentially, with r®ection V, and specific experimental results are presented in
knowledge of future frames beyorid+ L, according to the Section VI.

following algorithm:

while ( there are new framgs IV. WIPEDETECTION
it ( p(k,L) = Teorr) One can imagine many effects in which an evolving subset
n= k+L of pixels changes abruptly in each frame. The simplest wipes
if ( m not yet set
m=k—1L 2This requires us to ignore two triplets per GOP, namely the PPI and PIP,

else if ( ||fn _ fm|| > Tdist) Ezgguse one of the two required DFD’s cannot be reliably computed in each
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Pyrekd)

300 400
frame number, k

Fig. 2. The DFD-based correlation sequengg;(k, L) for a segment of
documentary video, witll = 3; dissolves occur during frames 115-140 an
492-516.

Fig. 3. Sample wipe sequences from network television, showing the wide

. . variation possible in computer-generated effects.
are those in which one sequence gradually covers or replaces

another, with no global movement of either sequence. More

complicated wipes can involve one stream "sliding” in ovet,ncentrate o7, . This sequence should increase from 0 to
another, or one “pushing” another aside. “Zoom” based WIP&$ the number of pixels in the image, asncreases fromn to

can also be created in this manner, with a new stegmpqr mogt wipes||Z, || will increase linearly or quadratically.
appearing from the center of the old one, expanding to fill 5ne representation of a video sequence that allows us to
the whole frame. Finally, complex computer-generated WiPggamine the|1, || sequence, without the restrictions of specific
can include page-tuming effects, projections, or artistic WiRgine models. is the histogram. We denote g bin of frame
boundaries (for a few examples, see Figure 3). One or mC}reS histogram asF}.(p) (the number of binspP, is a free
frames may not even contain content from either adjacent sh,g rameter); we will use the same vector shorthand,gffor

this is particularly common in sports video, where a largg,me arbitrary ordering of bins. Assuming for the moment
computer-generated “object” passes across the field of Vigw each frame's histogram is fairly uniform across different

to effect a transition using two back-to-back wipes. Due 10, tigns of the image, the histograms during a wipe can be
the broad range of gradual transitions that fall within the W'p@xpressed as

class, a detection method tailored to a specific wipe is likely

to miss many other kinds of wipes. ooy — ((Mell+ Eci(®) )
. . _ g k(P) k(P)
As in the dissolve case, we assume a wipe transition from N
seguence to sequencé, from framem to framen. A simple, 4 (1 x|l + Erx(p) Hy(p) (10)
overlap-based wipe can be described as N N kP

fe(z,y) = L(z,y)he(z,y) + [1 — (2, y)] gr(z,y) (8) Where Eg x(p) and Ep x(p) are error terms resulting from
) . o the spatial nonuniformity of the histograms gf and &,
where f}, is the resulting framé, and ;. is either0 or 1 for yegpectively. Note that this histogram-based wipe model has
eachk, z, andy. Ix(z,y) = 0 for all z andy whenk < m  the same form as the frame-space model (1) for a dissolve! If
(.e., before the wipe), andy(z,y) = 1 whenk > n (i.e., the values off , and Ey ;, are small and fairly constant in
after the wipe). In the case where one or both sequences slidg giso meets the conditions we imposed on the coefficients

in or out of the frame, (8) becomes oy, from the dissolve case. Specifically, the quantity
Te(@,y) = I(z,y)hy (¢ + 2hg, Yy + Ynok) B = |1k || + Ec.x(p) (11)
+[1 = Ie(z,9)] gk (T + 2g 1,y + Yg) (9) N

L . . _wil| be increasing ink from 0 to 1, and
where the wipe-induced motion of the sequences is described

by 2y Ygk» Thi, andy, . These two models are more 1 el + Errep) | _ . (12)
restrictive than one would like; they preclude the detection N

of many artistic wipes, for example. Natural object motion Such a parallel immediately suggests a wipe detection
in video typically fits these models as well, yielding onlalgorithm. As in the dissolve case, the correlation between
limited usefulness. The important information of each modahy two histogram difference vectorg,(— F, and F; — F.)

is that contained in the sequenég(z,y); as such, we will will be 1 during an ideal wipe. Moreover, a wipe will appear
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0.5

important in the region that actually changes over the frame
interval k — L to k + L. In a wipe, the size of this region (a
vertical slice of the image, for example) vanisheslas- 0.

For these reasons, we det= 1 from here on; this agrees with
experimental results obtained by varyidg In cases where
the histogram non-uniformity is caused by an object's edge
entering or exiting the region/slice of significance, the effect

i; on py;s: Will be impulsive—the straight line in histogram space
& will now be piecewise linear, with some small nhumber of
vertices.
08 ‘ 1 Equation (10) makes a computational assumption: the num-

ber of pixels in any histogram must be an integer, yet the
coefficient 5, may be such that the equation requires a non-
integral number of pixels in a particular bin. This quantization
error, if significant, can reduce the correlation among the

100 200 300 200 s 00 adjacent pair of vectors in a triplet. The error can be reduced
frame number, k by using fewer histogram bins, as well as by increasing the

Fig. 4. The sequencenss (k, L) for a segment of news video containing SPatial resolution at which one operates (using a low resolution
two wipes. L = 1 in this case, and wipes occur in frames 197-209 an@r a large number of bins would force very small quantities
352-364. of pixels into many bins, making any quantization errors in
the intermediate frame of a triplet more significant). For this

as a straight line in a histogram-space, where each dimensrigﬁson’ we perform thg histograms on DC.+2AC frames and

’ use 2 to 4 histogram bins per color dimension (8—64 total).

_corresponds to one bm_ of the _hlstogram. (This '”?ea“ty 'S While better characterizing these data-dependent quantiza-
independent of any nonlinearity in the time progression of tl?en and histogram non-uniformity errors remains an open

wipe.) In the same manner as the dissolve case, we define {Reblem their effects om can be reduced by low-pass
1] hist -

) . . ; pro
-frame histogram differencé (p) as filtering or otherwise post-processing the resulting correla-

DE(p) = Fr(p) — Fi_r(p) Vp. (13) tion sequence (the assumption here being that the errors in
prist(k, L) are approximately independent #). The gen-

We compute the correlation sequentially, from triplets arally impulsive errors due td » and Ey suggest the
frames: I I use of a median filter (or, more generally, af-largest
<Dk+L’Dk> . (14) filter), which while nonlinear, does have a sufficiently low-
D1€+LH2 HDH? pass characteristic to help with the quantizatiqn noise.. (As

an added benefit, low-pass filtering helps alleviate the time-
This value is compared to a threshold, and following thearying histogram distortions that MPEG compression and
pseudocode presented for the dissolve algorithm, the valiideo noise can introduce.)
of (6) is computed to determine the length of the candidateOne issue has not yet been addressed: can natural mo-
wipe; a wipe transition is declared if both thresholds are meion in video have this linear histogram-space characteristic?
Note that a condition similar to (6) could be computed in thRathologically-structured object motion into or out of a frame
histogram space; we have not done so, due to the unwante@l cause a straight line in the histogram-space, as can panning
constraint this imposes that the two adjacent shots must halve camera if the image contents and histograms change
sufficiently different histograms. The sequengg: for a radically during the pan. Experimentally, the number of false
sample stream is given in Figure 4. alarms attributed to object motion has been shown to be fairly

As in the dissolve cas€.,,. and T;;s; should be chosen small in natural video, provided the image histogram does not
to achieve the desired weighting between detection probabildiiange radically during pans. False detections due to panning
and false alarm rate. Once again, to counter the fact that tten only be eliminated at the expense of missing “push” type
mean value ofp;s; iS somewhat dependent on the type ofvipes (which are arguably a type of panning). This can be done
video and the recording/compression quality, the mean of thg computing the temporal variance of each macroblock’s
last M values is subtracted before thresholding with,... motion vectors—low variance corresponds to constant motion

Any natural change ig or &’s histograms through time (duein some direction, through time. In this case, a wipe is declared
to motion or other effects) introduces deviation frpm.: = 1  only if there are enough macroblocks with high temporal
in the same manner as motion ¢nor A did in the dissolve variance over the period of the candidate wipe. False alarms
case. Ad. is decreased7,—Gy_r — 0andHy—Hy,_r — 0, could be further reduced by adding additional constraints; one
because the and i histograms are very unlikely to changeexample is requiring the ratio ¢fD% || to || DE, , || to be either
abruptly (except in the case of a scene cut). constant or linear.

In addition, asL is decreased, the effect of error terig ;. In practice, we find that dissolves are often falsely detected
and Eg i in (10) diminishes. This is due to the use of tripletsas wipes by our algorithm. A dissolve does not have the
the deviation from spatial uniformity in the histogram is onlyinearity property in histogram space; rather, the histogram

Phist(k, L) =
' J
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Fig. 6. Triplet histogram correlation values,;; for wipe (solid line) and

1-wipe (dashed line) segments. The sample variance for the wipe segments
is 0.1386; for the non-wipe segments, 0.2175.

Fig. 5. Triplet correlation valuepyy, for dissolve (solid line) and non-
dissolve (dashed line) segments. The sample variance for the dissolve
ments is 0.0406; for the non-dissolve segments, 0.0387.

of the old shot is progressively shifted, bin by bin, towar 2
all pixels being in the “black” bin; the new shot is corre- ;4| |
spondingly shifted binwise from black to its final histogram
However, if the shots’ histograms are fairly continuous fror *°f
bin to bin (i.e., there are no spikes in particular bins, whil |,
other bins are nearly empty), then the dissolve can masquer
as a linear change in histogram space. This is particularlyg
problem when the number of bins is small; spikes are ves i
unlikely when there are only a few bins. The simplest solutic
is to cascade the transition detectors: only try to detect wip *°[
in areas previously declared not to be dissolves. While tt os}
introduces a two-level detection dependency—dissolve mis ol
will contribute to wipe false alarms—the result is well wortt

it. 02}

1.2

0
V. ANALYSIS OF THE CORRELATION STATISTIC -06 -04 02 0 0.2 04 08

noise in dissolve p

Given that the detection algorithms introduced in Sec-
tions Ill and IV are so similar once the correlation statistic§9 7- rdfa “noise”, after the dissolve indicator signa(k) is subtracted.
are computed, it is useful to study thresequences’ statistics.
Any information gained can be used to derive a more optimal
(yet computationally expensive) detector. due to motion, compression, etc., is nearly an ideal Gaussian

Figure 5 shows the distributions qfy, values for 13 process with sample variance 0.0387 (Figure 7). This process
minutes of video, separated into dissolve and non-dissolwék), wheren(k) = para(k) — s(k), is not white noise—its
segments (after filtering out cuts); Figure 6 is the wipe cageower spectrum is tilted toward DC—Dbut is fairly independent
The overlap in densities is not as bothersome as it migthf[ s(k). (The coarseness of Figure 5's distribution within the
appear, because detection is done on variable-length setgliggolve region is due to the relatively small number of triplets
frame triplets (using the algorithm presented in Section I} it.)
not on individual triplets. The length of the transition is unknown during the detection

One interpretation of the distributions, particularly thosprocess, yet we would like to take advantage of the inter-
of pasa, iS that of a signal+noise detection problem, whergependence of the(k) indicator values; this can be done
the signal of interest (denotedk)) is a binary indicator of using a parametric detector, which averages over some given
whether there is a transition during the triplet. (In the wipdistribution of test signals. In this case, the parameter is the
case, the clipping of the values tol causes the noise distri-transition length; an estimated distribution of dissolve lengths,
bution to not be independent sfk); this could be alleviated measured from 95 transitions, is shown in Figure 8. We call
by more sophisticated detection-theoretic techniques.) If wiis PMFw(m). Note that, even within the framework of the
subtracts(k) from pg(k), we find the measurement errorsimple detector presented in Section Ill, this distribution could
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Fig. 8.  Distribution of dissolve transition lengths, measured from 96ig. 9. Dissolve likelihood functiorC(l), expressed in terms of the frame
dissolves. Some values are interpolated from neighboring samples. numbers beginning each block of tripldtsnote the logarithmic scale. The
MPEG video stream is the same as in Fig. 2.

be used to eliminate inordinately short or long false detections. S . .
: . . - . .can be done by estimating the covariance malix and
Optimum parametric detectors in non-i.i.d. Gaussian noise .- "°. ;
multiplying by one of its Cholesky factors) [18].

are well known [18]. Such detectors by necessity work on Given the set of vectors, the block PMFV (p, ¢), and the

blocks of input data, where the block in our case must E] - PR SRR, :
longer than the support of the parameter's PMF. Denote t I?ewhnenmg matrix ¢'—*), the transition likelihood function

block lengthk; w(m) — 0 for m > K. In order to make each ¢&n be calculated for each block of correlatioRgl) as

. S ) . follows:
block’s noise statistics consistent, we require that blocks begin

at a GOP boundary; otherw.ise, we have a non-stationary nojsg) — Z W (p, q) exp [(ST(p) q)CT'R(1)) — 1 (57 (p, 9)S(p, )
source as the blocks’ starting points shift through one GOP. o 2
Block [ therefore contains time indices (framdsgj through (16)
IG + K — 1, whereG is the length of a GOP. A sample plot of £(I) in Figure 9 shows that this ap-
We begin by setting:, to be the (estimated) mean of theProach extracts dissolves quite well from thg, sequence.
pasa Values when no transition is present;is the mean during A histogram of£(l) for dissolve and non-dissolve segments
dissolves and fades. Denote (/) the column vector of is shown in Figure 10 (note the log scale); when compared to
measurements formed by (k) — 1o, wherelG < k < IG + Figure 5, the improvement is clear. As argued in Section I, it
K —1. We then construct a parameterized sekofength test is also necessary to test tlié length of a candidate dissolve
signal vectorsS(p,¢), 0 <p < G—1andl < ¢ < K —p, in frame space before declaring a transition. Specifically, a

where(@ is the length of a GOP: dissolve transition is declared if both the following inequalities
hold:
S =[0---0u---u0---0F 15
(p,q) [R,_,u ] (15) logioL(l) > Te
P q

and || firg—1 — fiell = Taists 17)

where = — po. Essentiall ntains ever ibl . .
erep = — po. Essentially,5" contains every pOSSbeWhereQ is the largest term (over values @j in the sum

transition length of interest, with starting points anywher . " .
within the first GOP (starting points within later GOP's wil(6). In practice, transitions often span multiple GOPS, so

b detetd n subsequet boos ). Th staonary ol 91! T o b o mre conseeunbuesin
based problem can then expresse®éy = N (1)+S(p, q) for ’ P 9 9

somep andg. The densityw(m) must mapped intoV (p, q) L(1) value as the dissolve transition. Given our “on-then-off”

according to the length of the transition tested Sip, q), grgfggﬁ)\?esigq;::;j(f ,t?])e, ]Eir;; ((I)(;]((:aally) largesiC({) during
s = .

gl\g‘ngthW(pz 9) = w(q). kY i tiid ither is th : Recall that, in order to gain the stationarity required to
ectsor ]\? ?Olsg Ei?# etﬂ(?{rel: 23 L'I.n;e,llnbelgcer IZS a:dntﬂ:e make this parametric detector reasonable, we dropped the

;’ tsi ( I) S torsS I\tl b 19 hit IEZ( )d te th temporal resolution of the detector to the length of a GOP by
est signal vector (p,q) must be prewhitened, denote eusing blocks ofpgy, values. If a greater temporal resolution is

whitened vectorsi(l) andS(p, q), respectively (the whitening required, the largest term of the sum in (16) can be used as an

3 o . ) __estimate of the parametepsand ¢ best fitting the transition;
If certain triplets are skipped, such as the GOP boundary triplets mentioned d . h d ding f Section VI
in Section IlI, this equation must be modified to account for the non-constah@Ndp + ¢ give the exact start and ending irames. Section

time increments. This complication is ignored for clarity’s sake in the papgshows some results of this more complex detection algorithm.
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‘ images so similar that a casual human viewer likely would

/‘ — dissolve
i not notice the transition. The dissolves ranged in length from
‘ 1 12 to 65 frames, and a number of the transitions contained

0.3 i
\
!
motion of some sort.

q Testing yielded good results with,,,.. = 0.15, after the

0.25- - l B
! | mean of the past 125 values was subtracted. (Depending on the
02 j | 41 video, the effectivel,,,.. was between 0.4 and 0.8}, =
5 i ' 55000 (normalized to the number of macroblocks per frame)
o5l ‘ L | and at least 3 successive above-threshold triplets were required
: in order to declare a dissolve. With these values, 52 out of

: | | the 59 dissolves were properly detected, with 24 false alarms
(a rate of one per 2633 frames). Different thresholds can be

0.1 !
! N
oosl | " | selected to yield different detection probability versus false
! ' alarm tradeoffs. In most cases, the detector correctly identified
j RN ) the locations of the transition start and end to within four
- 0 N (L(m?, T s frames (in ignoring B frames, the theoretical best accuracy is
¥ three frames).

Fig. 10. Distribution of£ (1) values for dissolve and non-dissolve segments 1hese results confirm that frame-space correlation is a
reasonable statistic to use for dissolve detection, and that using

of 13 minutes of video; again note the log scale.
DFD’s is an effective way to combat the errors in correlation
introduced by shot motion. By visual inspection oz (k)

This parametric detection structure could also be useful fgf5ts one can generally pick out all of the dissolves (even
the more general case of gradual transition detection, whek@ ones that are missed); this leads us to believe that a more
some statistic is computed per frame (or set of frames) and §i$yhisticated detector could produce better results using the
probability density of transition lengths is known or estimate@amepdfd sequence. Results for such a detector, that described
provided that the “noise” in measurements is approximately section V, are presented in the next sub-section.

Gaussian and, more crucially, independens(@f). As can be  |ncjyding the overhead due to DC frame extraction, our
seen in Figure 6, the noise im.;s; is highly dependent on 4 4qrithm processed video at about 170 frames per second.
s(k) (and is not Gaussian); applying the parametric detectoy tact apout 95% of the processing time is spent parsing
unaltered indeed yields poor results. In the absence of tractahple MPEG stream and calculating the DC frames; once the
independent noise models, the only way to improve detectigft: frame is available, our algorithm takes only an additional
with ppis; is to compare sample densities to the two if 3 ms/frame on the test machine. Speed in parsing could
Figure 6. Such a comparison is likely to be problematic, §gely be improved through better optimization of our partial
the number of samples within a given block is small (angpeG decoder.

there is no way to refine the temporal resolution beyond

the block level).pn;s; could certainly benefit from further

analysis, however; it is possible for example that some neugl Dissolve Detection via Parametric Detector

network or adaptive filter structure exists which will improve .

the results. Once thepgq(k) sequence is computed, the detector out-

lined in Section V can be applied as an alternative to the

V], EXPERIMENTAL RESULTS simple detector. Using the same 23 700-frame Fest sequence,

) T, = 0.1, and Tz = 55000, the parametric detector

Each algorithm was tested with “natural” television and fillgorrectly finds 53 out of 56 dissolves, with 12 false aletn@f
footage, digitized from VHS tape sources with a hardwatg@e three missed dissolves, one falls at the very end of a GOP
MPEG-1 encoder. The resulting video quality is hardly perfecind is short enough to not affect any DFD’s; another overlaps
making for a good workout of each transition detector. Eagllightly with a wipe transition. The final missed transition is
test stream was digitized at a resolution 3if2 x 240 and |ikely due to unfortunate motion-compensation decisions on
a frame rate of 29.97 fps. The test sets consisted of neig part of the encoder, such that the DFD’s did not suggest
video from different networks, documentary footage, and othgradual changes in each pixel. Seven of the 12 false alarms

material. All computation was performed on a 350 MHz Sugire due to cuts, which could be eliminated if a cascaded
“cut-dissolve-wipe” detector were implemented; three more

workstation.
are semantically “dissolve-like” operations, such as captions
A. Dissolve Detection with Simple Detector or computer-graphic effects fading away. The total number of
ftalse alarms, if one discounts those due to cuts and dissolve-

A thirteen minute set of video was used as a “training” s§ ; . .
. . &l,(e effects, is 2 per 13 minutes of video.
on which parameter values were selected. The training sets
23 700 frames contained 59 dissolves, 115 cuts, and 6 wipeg _ _ _ _
I ianifi t obiect and camera motion. M ‘The total number of dissolves is 56, not 59 as in the previous test, because
as well as some significant obje 1on. Masty the dissolves occur withids frames of the end of a stream, thus are
of the dissolves were clearly visible, but three were betweaever properly tested against thép, ) sample vectors.
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Fig. 12. recallx precision for the parametric dissolve detector, over range
Fig. 11. ROC plot for the parametric dissolve detection method on a ©8 7z andTy;s:; the maximum, 0.8395, occurs @iz = 1.5 andTy;s¢ =
minute (23 700 frame) television video sequence. The false alarm rate is €7@00.
number of false detections divided by the total sequence length; caption fades
and similar effects, when detected, were counted as false alarms.
in between). In fact, as designed, our parametric detector will
not detect more than one transition withifi frames (which
At the expense of a higher false alarm rate, the detectigfbne accounts for 10 misses); by adding more complicated
probability can be pushed up to 0.982; 31 false alarms arf sequences to the test s, ¢), these could be detected
produced in this case. Discounting caption fades and cui$.some computational expense. (One could make an argument

the false alarm count falls to 15 (slightly more than one peéfiat the short non-dissolve segments in cases like this are
minute). Different detection/false alarm tradeoffs are possibleyt “shots” in the same sense as those in non-commercial
Figure 11 shows the raw false alarm rate corresponding t&@ments.)
number of detection probabilities. In most cases, within each test segment, the false alarms
An alternative quality measure is to find the maximurhave lower likelihood function values than the real transitions
achievable) = (recall x precisior) value, where recall is the (yet still above threshold); very few non-transition regions
detection probability, and precision is the number of corretiduce higher likelihood function values (16) than the smallest
detections divided by the total number of detections (corredissolve segment’s value. The cutoff region i varies
or not). A perfect detector is one witfp = 1. (In practical somewhat by stream, generally according to the content and
applications, the quantity of false alarms is not as criticéhe MPEG encoder. (This variation is significantly less than
as the weighting given to them in th@ measure defined the stream-dependent variation in the simple detector’s optimal
here, but this metric is a reasonable basis for comparisom,),...) One way to both address this issue and to provide the
Automated detection and false alarm counting techniques arser with more control over the coarseness of the temporal
used to iteratively find the maximur@ for the parametric segmentation is to have a presentation-time contralofThe
detector; the maximum, 0.8395, occurs whHEn = 1.5 and user would increase th€. “knob” for coarser segmentation
Tuist = 67000, yielding a detection probability of 0.891 and(avoiding caption fades, etc), and decrease it to see the less
a false alarm rate of 0.228 per minute. T@evalues over a dramatic gradual transitions (for instance, those involving only
small range ofl; and T are shown in Figure 12. a portion of the screen). This operation would require efficient
The parametric detector was also tested on longer streastsrage of theZ(l) sequence, and fairly rapid threshold testing
a total of 23 additional minutes; in addition to news andnd presentation, as the threshold would be unknown at the
documentary footage, the longer streams contained a numtiee of analysis.
of commercials. Blindly using’; = 0.1 and T,z;5; = 55000, When the largest term of the sum in (16) is examined as
108 out of 149 dissolves are detected, with 36 false alarmisggested at the end of Section V, the temporal accuracy of
(1.57 per minute). Discounting false alarms due to cuts affie derived start and stop points for each dissolve is generally
caption fades, the number drops to 24 (1.04 per minute).hétter than 4 frames. Given that the B frames are ignored, it
necessary, further processing can be done to cut the numbeisampossible to be more accurate than 3 frames on average
false alarms (for example, requiring each triplet's frame spawedth our test streams.
vectors have at least a certald length during a dissolve, or As most of the computation time is spent extracting DC
utilizing other statistical properties dissolve transitions muftames and DFD’s, the increased computational burden of this
have). Most of the missed detections occur during the commedetector is minimal (on the order df additional multiply-
cial segments, where large numbers of dissolves occur riglitds per GOP).
after one another (often, with very few non-dissolve frames Applying the parametric detector to other dissolve detection
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techniques is of interest as future work. Such a test—using 1 16
alternative statistics extracted from the raw video stream, th
the same parametric detector—would be a fairer comparis 14
of our scheme with existing algorithms than would be a simp
test with empirically-determined absolute thresholds. The te 12
would then “factor out” the effects of threshold selectior
comparing only the underlying dissolve models and extractic;
of dissolve-related statistics.

t

1

minu

0.8

false alarms per

C. Wipe Detection

In testing the wipe algorithm, the training video set wa
augmented by short clips with artificial wipes (between T
news shots) created with Adobe Premiere 4.2.1. Forty te
clips, with varying parameters and styles of wipes, wel
created. The first shot of each clip contains mild object motio

0.4

0.2

and the second shot of each is a slow zoom; neither shot °%  °¢ 0% 07 0/’ 08 085 08 0% 1
motionless during the wipe. The combined length was 42 100
frames, or 23.5 minutes. Fig. 13. ROC plot for our wipe detection algorithm over 23.5 minutes (42147

frames) of video, including some synthetic wipes. The false alarm rate is the

S'Xty out of 62 wipes were detected, with 35 false alarmﬁumber of false detections divided by the sequence length.

when using the parameteis,,,.. = 0.25 (after the running
mean was subtracted]y;s; = 61000, and 2 histogram bins

per color dimension (for a total of 8 bins). The missegdyced-resolution, motion-compensated, frame space. Wipes
were mainly due to the adjacent shots having very similgfhq related computer effects are members of the latter class,
histograms: one example is a wipe between two close-up Views parallels are drawn with the dissolve case to develop a
of a basketball play, having very similar histograms; except fgfetection algorithm using histogram-space properties. Both
its white boundary, the transition was barely visible to the eygigorithms have very good detection performance and run
Most of the false alarms were due to close-up panning duriggickly enough to enable analysis of real-time streaming
a tennis segment, where the histograms changed wildly.  yideo (with ample headroom to allow further processing).
Using the same parameter set, the algorithm was testedmitformance is improved, at least in the dissolve case, by
a feature-length (135.5 minute) movie containing 28 wip&smploying a more sophisticated detector based on the same
of varying styles, along with significant motion and specigdytracted statistics.
effects. 14 of these wipes were detected, with a false alarmrpe gigorithms described above can also be extended to
rate of 4.0 per minute. Again, most of the false alarmge getection of partial-frame gradual transitions: the appear-
were due to rapid camera motion in action sequences. Thgee of captions, graphic effects, or other spatially localized
wipes that were not detected were ones with very brogdents. The correlations and histograms would be taken over
borders, within which the two images were blurred togetheg,o region of interest, and any time they meet the required
in this region, the histograms will not be linearly Combine%resholds, the same tests would be performed on the re-
(some of the transitions were midway between a wipe and\&inder of the frame, to ensure that it doest meet the
dissolve). Naturally, the results will improve if the parameter$, esnolds (thereby confirming a partial frame transition). In
are tailored to this particular stream, and different detectigRe gissolve algorithm, a frame of correlations—in this case,
versus false alarm tradeoffs can be reached. taken pixelwise in color space—can even be constructed to
The wipe algorithm requires about 2.9 ms/frame of comyq ajize which regions best meet the dissolve model.
putation time; when added to the 18.1 ms/irame requiredcqomnarison of our dissolve and wipe detection algorithms
to extract the DC+2AC frames, the algorithm runs at a raf&i, others’ methodson the same streamsould be useful
of nearly 48 frames per second. If the dissolve algorithm {§ e research community. Each algorithm's parameters and
F;ascaded with the wipe algorithm, the overall processing Specﬁpesholds would need to be similarly optimized (or similarly
is 46 frames per second. not optimized) for the data set, which should contain a
wide variety of video material. Further, a method is needed
VII. CONCLUSIONS ANDFUTURE WORK for characterizing thresholds’ dependence on video sources.
In this paper, we have presented a novel approach to tee of our parametric detector may be helpful in factoring
detection of gradual transitions in compressed video strearpst the varied thresholding techniques employed by existing
The gradual transitions are grouped into two categories: thadgorithms.
that affect every pixel simultaneously, but only by a small Histogram- and frame-space trajectories of video streams
amount in each frame, and those that affect the pixels in sop@tentially hold significantly more information than the simple
sequence, each pixel being changed abruptly. Dissolves gmdsence or absence of a line reveals. We are exploring exactly
fades are members of the former class, and an algorithmwbat information can be gleaned from joint study of these
detect their presence is proposed based on their properties tragectories, possibly with the aid of additional cues, such as
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audio, motion vectors, or other available data. By perforng] H. V. Poor,An Introduction to Signal Detection and Estimati@nd ed.
ing joint processing, with all available tracks (audio, videg,  Springer-Verlag, 1994. _ o

d dat hiah-level content information can be heuri t'Callilg] R. A. Joyce, “Content-based temporal processing of video,” Ph.D.
_an ata), high- : Vv _' h ' s uristically = gissertation, Princeton University, Department of Electrical Engineer-
inferred from “mid-level” statistics such as transition detec- ing, November 2002. Available at http://iwww.atc-nycorp.com/papers/
tions [19]. Segments of news broadcasts could be identified, rfioycethesis.pdf.
voiceovers or interviews detected, and important replays from
a sports event could be extracted, as just a few examples.
With this high-level information, the stream can be inserted
appropriately into a browseable or searchable database.
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