
ava i lab le at www.sc ienced i rec t . com

journa l homepage : www. e lsev ier . com/ loca te / d i in

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 4 3 – S 4 8
File Marshal: Automatic extraction of peer-to-peer data

Frank Adelstein*, Robert A. Joyce

ATC-NY, 33 Thornwood Drive, Suite 500, Ithaca, NY 14850, United States

Keywords:

Peer-to-peer

P2P

Forensics

LimeWire

File sharing

a b s t r a c t

Digital forensic investigators often find peer-to-peer, or file sharing, software present on

the computers, or the images of the disks, that they examine. Investigators must first

determine what P2P software is present and where the associated information is stored,

retrieve the information from the appropriate directories, and then analyze the results.

File Marshal is a tool that will automatically detect and analyze peer-to-peer client use

on a disk. The tool automates what is currently a manual and labor intensive process. It

will determine what clients currently are or have been installed on a machine, and then

extracts per-user usage information, specifically a list of peer servers contacted, and files

that were shared and downloaded. The tool was designed to perform its actions in a foren-

sically sound way, including maintaining a detailed audit trail of all actions performed. File

Marshal is extensible, using a configuration file to specify details about specific peer-

to-peer clients (e.g., location of log files and registry keys indicating installation). This paper

describes the general design and features of File Marshal, its current status, and the plans

for continued development and release. When complete, File Marshal, a National Institute

of Justice funded effort, will be disseminated to law enforcement at no cost.

ª 2007 DFRWS. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The FBI defines cybercrimes as actions by ‘‘people who use the

Internet and computers to illegally penetrate business and

government computer systems, including stealing trade se-

crets and intellectual property, trafficking in child pornogra-

phy, enticing children from the safety of their homes, and

attacking critical infrastructure such as computer networks

and power grids’’ (RCFL Program Annual Report, 2006). In their

2006 Annual Report, the FBI classifies crimes into eight types:

terrorism, counterintelligence, cybercrimes, public corrup-

tion, civil rights, organized crime, white collar crime, and ma-

jor theft/violent crime. Cybercrime is the number one

category of crime investigated at 11 of the 13 FBI Regional

Computer Forensic Labs (RCFLs), and is number two at the

remaining two labs. Further, specifically, child pornography

or exploitation comprises 35% of the cases of the Philadelphia
RCFL, 38% of the cases for the Rocky Mountain RCFL, 51% of

the cases for the Intermountain West RCFL, and 65% of the

cases for the Western New York RCFL (RCFL Program Annual

Report, 2006).

Often, peer-to-peer (P2P) file sharing networks are widely

used in these crimes, and represent a significant source of ev-

idence on computers that are under investigation. Of particu-

lar interest to investigators are the configuration parameters

(user name, password, peers/servers used), times of use,

time of install, log files of any transactions, and the down-

loaded (or shared) files themselves. Currently, an investigator

must gather, categorize, and analyze all of this information by

hand. This typically requires the investigator to research the

specific P2P software to determine the location on the disk

where the software stores files, the names of configuration

files, and their content. In addition, the investigator may

need to obtain some secondary software (beyond the
* Corresponding author.
E-mail addresses: fadelstein@atc-nycorp.com (F. Adelstein), rob@atc-nycorp.com (R.A. Joyce).

1742-2876/$ – see front matter ª 2007 DFRWS. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2007.06.016

mailto:fadelstein@atc-nycorp.com
mailto:rob@atc-nycorp.com
http://www.elsevier.com/locate/diin

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 4 3 – S 4 8S44
investigator’s normal tools) that translates a log or cache file

into a human-readable format. Clearly, this is a time-consum-

ing process, can yield inconsistencies, and can result in prob-

lems with the forensic integrity of the examination.

Investigators need tools that automate this process and bun-

dle together all of the information relating to each P2P

network.

Currently there are a few dozen networks and several

dozen P2P programs in general use on the Internet. While

a small handful of programs comprise the majority of P2P us-

age, each program is slightly different. Having a customizable

tool that processes evidence from many different P2P clients

would be of great benefit to investigators. Few tools exist for

examining P2P systems. KaZAlyser, probably the best known,

analyzes FastTrack-based systems, such as Kazaa, iMesh, and

Grokster. However, it is not extensible to non-FastTrack sys-

tems, and analyzes the database files generated by the P2P cli-

ent after they have been found. It does not determine what

clients have been used. General purpose forensic tools like En-

Case can be extended through scripting, but are not designed

to analyze P2P evidence and cannot easily parse P2P systems’

configuration files or database formats. In general, most P2P

analysis is done by hand.

The problem is how this automated extraction and analy-

sis can be done in a cost-effective, yet extensible way. It is es-

sential that the analysis tool must allow knowledge of new

P2P software tools to be added through the use of ‘‘plug-ins’’

or configuration files. In addition, the process must be done

in a forensically valid way. Specifically, it must give consistent

and accurate results for every run. The process cannot be

a ‘‘black box’’; it must be well documented.

2. File Marshal

File Marshal is a digital forensic tool for the extraction and

analysis of data from peer-to-peer software on client ma-

chines. File Marshal will automate the tedious and time-con-

suming process of looking for evidence of peer-to-peer

usage. File Marshal will perform these tasks in a forensically

valid way and present them in an easily readable form on-

screen and in a format that can easily be incorporated into

a report. File Marshal’s modular, extensible design will make

it possible to add extensions for new types of peer-to-peer

clients and networks.

File Marshal quickly determines what P2P clients were

present on a disk image and presents per-user information

on those clients, including shared files, downloaded files,

and peer servers. File Marshal consists of two components,

the graphical user interface, called the front-end, and the

command-line based back-end. The front-end mediates

interactions with the investigator and formats the data. The

back-end searches the file system for directories and files,

and interprets the contents of registry files.

In this section, we describe the overall operation and capa-

bilities of File Marshal. The first subsection describes the three

modes of operation. The next subsection describes logging

and report generation, followed by a description of search

capabilities. The registry library is described next, followed
by the File Marshal user interface and the back-end configura-

tion file.

2.1. Three phases of operation

File Marshal operates on a mounted disk image.1 An investiga-

tor invokes File Marshal, creates an inquiry, and starts the

analysis. There are three phases to the investigation: discov-

ery, acquisition, and analysis, plus report generation at the

end. Fig. 1 shows the phases and the information each phase

passes to the next.

In the discovery phase, File Marshal examines the target

disk image and determines what peer-to-peer clients are cur-

rently, or were previously, installed. To perform this check,

File Marshal looks for the presence of files, directories, and

registry keys and values. The configuration file, discussed in

Section 2.6, specifies the artifacts that indicate if a particular

client was installed. In some cases the programs may have

been deleted, but the data directory remains. Registry keys

for user preferences may also persist after the user uninstalls

the P2P client, or reside in backup versions of the registry gen-

erated when the operating system creates a system restore

(check)point. Files are specified by a pathname. In addition,

they can be specified by a hash (currently MD5, but others

can be supported). Registry entries can include the (sub)keys,

values, and their data.

In the acquisition phase, File Marshal gathers user-specific us-

age information for specific P2P clients. For each user, File Mar-

shal gathers configuration and log information, including peer

or bootstrap servers contacted, files downloaded and shared,

and other forensically relevant data maintained by the specific

P2P client. Again, the specific files are defined in the configura-

tion file. If special code is required to display a file (e.g., to decode

a hash list or date format), the configuration file lists the Java

modules (classes) to be used for parsing; new parsers can be cre-

ated as needed using a straightforward API.

In the analysis phase, File Marshal displays the information

gathered, and allows an investigator to view details, such as

the contents of files, and sort data by various fields (IP number

Discovery

Acquisition

Analysis

Report
Generation

clients’ installation locations

user specific files, configs, logs

servers, downloads, logs (standardized)

Fig. 1 – File Marshal investigation process.

1 While nothing in the design and implementation precludes
File Marshal from running on a live system, this effort focuses
on analyzing disk images.

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 4 3 – S 4 8 S45
Fig. 2 – File Marshal audit log.
of server, date last contacted, etc.). Investigators can view

downloaded files by launching an appropriate viewer (e.g., Ac-

robat for PDF, Firefox for HTML, Photoshop for an image), and

display details on configuration and log entries, as well as

search for files based on hashes or a set of hashes, such as

NIST’s National Software Reference Library (NSRL) or the Na-

tional Center for Missing and Exploited Children’s (NMEC)

databases.2

2.2. Logging and report generation

File Marshal logs all operations it performs. The log file pro-

vides very detailed, low-level information on what actions

were performed, thus maintaining the forensic integrity of

the investigation. The log file provides details on how the

back-end tool was invoked, as well as any return or error

codes. Fig. 2 shows an example of viewing the audit log, which

contains entries showing the actions taken during the acqui-

sition mode. The audit log is not intended to be easily readable

by humans, but rather it allows investigators to verify exactly

what actions were taken (and by the same token, what was not

done) during an investigation, and would be appropriate to be

included as an appendix in a report.

File Marshal generates a summary report of the findings in

a format that can be included in an investigator’s report. Ini-

tially, supported formats will include HTML and PDF, so that

File Marshal reports can be easily inserted into a larger foren-

sics report.

As part of maintaining forensic integrity, File Marshal auto-

matically hashes the output from the back-end tool. File

2 NSRL is available at http://www.nsrl.nist.gov. NMEC is only
available to law enforcement.
Marshal can also compute the hash of any acquired file. Since

the investigator will be using a static file system, the tool used

to originally image the disk may have already computed

hashes of these files. In that case, the forensic integrity of

the investigation is strengthened; the hashes computed by

File Marshal corroborate the data it finds with that of the

imaging tools.

2.3. Search function

File Marshal will allow the investigator to search for various

usage-specific items. This includes IP addresses and DNS

names of peer servers, names of files, and file hashes (MD5,

SHA-1, etc.). For instance, if an investigator wants to trace

all contacts with a particular sever, the search tool would

return all contacts regardless of the P2P client or clients used.

2.4. Registry library

In the discovery phase, File Marshal looks for artifacts indicat-

ing that a P2P program has been installed or used. One artifact

it examines is the registry. However, because File Marshal per-

forms an offline analysis of static registry files, there is little

support for retrieving keys and values from a file (as opposed

to the registry of the running system). Therefore, using docu-

mentation of the registry file format found on the Internet, we

created our own library to support parsing and interpreting

registry files.3 The library routines support enumerating keys

3 Limited information on the format of the registry file exists.
We used the information from the URL http://home.eunet.no/
pnordahl/ntpasswd/WinReg.txt as a source and verified the re-
sults using regedit.

http://www.nsrl.nist.gov/
http://home.eunet.no/pnordahl/ntpasswd/WinReg.txt
http://home.eunet.no/pnordahl/ntpasswd/WinReg.txt

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 4 3 – S 4 8S46
Fig. 3 – The File Marshal user interface.
(and subkeys), their values, the type associated with each

value, and the data content of each value. In addition, it sup-

ports directly looking up a key by name. It will also support re-

trieving the mtime (modification time) and the access control

list (ACL) associated with a key.

Because the library supports reading any registry file, File

Marshal could examine alternate or backup registry files, in

case some of the keys had been purged from the active regis-

try when the computer was seized and the disk imaged. This

will provide greater flexibility with respect to detecting the

presence of peer-to-peer software.

As this library matures, we will make it available as an

open-source tool for inclusion in other software or forensic

research.

2.5. User interface

The File Marshal user interface, shown in Fig. 3, presents in-

formation about each P2P client it detects.4 Within each tab

(one tab per client), it presents information specific to each

user account in the disk image that has evidence relating

to using that client. In the example, two client tabs are

4 Note: The figure shows a test case in which LimeWire was
used to gather various legal images from public sites.
shown, LimeWire and Kazaa, with the LimeWire tab

selected.

The installation information provides details about where

the client was installed, what version, and whether it is

a full or partial installation. Partial installation indicates that

a P2P client has been on the system but has been (at least) par-

tially removed. In addition, a web page link provides more in-

formation about the client when clicked. Future versions will

show more installation details, such as the install date, if

available.

The usage section describes how that client was used by

specific users. A pull-down menu allows the investigator to se-

lect individual users or ‘‘All users combined’’ to view all P2P

activity on the disk image. At the bottom of the window, three

tables provide summary information on peer servers, shared

files, and log entries.

2.6. Configuration file

The differences between most peer-to-peer client programs

are generally limited to the file paths they use, and the format

of the information in configuration, cache, and log files. File

Marshal uses a configuration file to specify the particular de-

tails of a peer-to-peer client. Adding support for a new client

requires creating a new configuration file to describe the

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 4 3 – S 4 8 S47
<?xml version="1.0" encoding="UTF-8"?>
<ClientConfig xmlns=
 "http://www.atc-nycorp.com/filemarshal/acquisitionconfig/2007/01"
 version="0.8">
 <!-- Generic name -->
 <Network>Gnutella</Network>
 <!-- Specific instance name -->
 <Name>LimeWire Pro</Name>
 <Version>2.3b</Version>
 <Module>com.atc_nycorp.filemarshal.module.limewire</Module>

 <InstallationArtifacts>
 <Directory name="Program Files/LimeWire"/>
 <File name="Program Files/LimeWire/LimeWire.exe"
 md5="9fe8ed98b63ca6ac4dabf15025482916"
 version="4.12.11" />
 <File name="Program Files/LimeWire/LimeWire.jar"
 md5="0b27fda0142b4b9559f936a9c3ebbdb8" />
 </InstallationArtifacts>

 <UsageArtifacts>
 <!-- Acquire mode -->
 <Data type="config" name="limewire.props" path="$FM_USER/.limewire" />
 <Data type="log" name="createtimes.cache" path="$FM_USER/.limewire" />
 <Data type="cache" path="$FM_USER/.limewire/fileurns.cache" />
 <Data type="log" path="$FM_INSTALL/install.log" />
 <Data type="cache" path="$FM_USER/.limewire/gnutella.net" />
 <Data type="shared" path="$FM_USER/Shared" />
 <Data type="shared" path="$SYSTEMROOT/limewire" />
 </UsageArtifacts>

</ClientConfig>

Fig. 4 – LimeWire client configuration file (XML format).
new client, and possibly adding a module (or plug-in) to the

user interface to display any information that is unique to

the new client. This allows File Marshal to be easily extensible

to support new P2P clients that are released.

The configuration file is an XML file. It has three

sections: client data, installation artifacts, and usage artifacts.

An example of a client configuration file for LimeWire is

shown in Fig. 4.

The first section specifies client data. This includes details

about the P2P client, including its name and version, and the

name of the module that handles displaying information

about this client. The example specifies that this file describes

version 2.3b of LimeWire Pro, which is part of the Gnutella

class of peer-to-peer networks.

The second section specifies installation artifacts, for exam-

ple files, directories, and registry keys, which indicate that the

client is or has been installed on the system. The files and

directories are specified by path. Also, files can include an

MD5 hash attribute to match the content of the file in addition

to its name, and a version attribute to indicate that the file is

the binary for a specific version of the client. This supersedes

the version information in the client data section. If all entries

in the installation artifacts match, File Marshal describes it as

a ‘‘full’’ installation. Similarly, if only some entries match, it is

described as a ‘‘partial’’ installation. If none match, File Mar-

shal will not display information on the client. However, the

report will include a list of all clients for which File Marshal

searched. In the above example, the artifacts include a direc-

tory, the executable file, and a ‘‘.jar’’ file. Since LimeWire does

not use installation-wide registry keys, no registry keys ap-

pear in this example.
The third section specifies usage artifacts, which include

four types of files: log, config, cache, and shared. Log files con-

tain information about how the program was run, for example

search terms that were used. Configuration files specify how

the client is set up, and may specify where log files are stored.

Cache files store temporary results, such as what peer servers

have been used, or what files have already been retrieved. Fi-

nally, shared folders contain downloaded files and files that

are to be shared with others. File Marshal will distinguish

downloaded and shared files, if the P2P client does. In the

above example, limewire.props is the configuration file,

install.log is the log file, Shared and limewire, in different

directories, are two directories for shared files, and fil-

eurns.cache and gnutella.net are cache files.

The literal $FM_USER is replaced by all user home directo-

ries on the disk image. Specifically, File Marshal will iterate

over every user directory, searching for files that match the

pattern specified in the path. $FM_INSTALL is replaced by

the base directory in which the client is installed. All other

names that start with a dollar sign ($) are replaced with the

corresponding environment variable, if it exists, or an empty

string otherwise.

The ‘‘module’’ specified in the client data section of the con-

figuration file, e.g., com.atc_nycorp.filemarshal.module.

limewire, is Java code that the graphical user interface (GUI)

front-end uses to display the files, specifically client-specific

files such as log and configuration files. For example, the

display module shows log file dates in a uniform way in the

interface even if one client’s log file uses year–month–day

and another uses number of seconds since the Unix epoch

(January 1, 1970).

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 4 3 – S 4 8S48
3. Current status and future plans

File Marshal is a work-in-progress, currently under develop-

ment through a grant from the National Institute of Justice.

We have an initial prototype that demonstrates the capabil-

ities, and plan for a beta-release at the end of summer 2007.

In early 2008, the File Marshal product will be made available

to law enforcement at no cost.

The current version of File Marshal supports only the Lime-

Wire5 peer-to-peer client. We will add support for different

types of file sharing clients, including BitTorrent and Google’s

hello program. We had originally planned to support Kazaa

early on, but our law enforcement contacts report that its

use has dramatically declined, so we have reduced its priority.

To increase the diversity of evidence File Marshal can acquire,

we may add support for analyzing log files for non-file sharing

programs, such as Skype.

We have implemented the discovery and acquisition

phases, and have designed the analysis phase. We have com-

pleted a proof-of-concept of File Marshal to demonstrate to

our law enforcement partners, to enable us to gather feedback

on our designs. At the end of the summer, we will release

a beta version, which will include analysis tools such as

searching based on server and file names, and file hashes.

The beta version will also include support for BitTorrent.

File Marshal currently runs on Microsoft Windows (2000 or

better), since a majority of investigators use that platform.

However, the code is easily portable to Unix and similar oper-

ating systems, such as Linux and MacOSX, because the front-

end is written in Java and the back-end is written in C using

minimal operating system specific (i.e., non-POSIX) function

calls. This will permit File Marshal to run a forensic analysis

of any of these machines, i.e., of both Windows and non-Win-

dows disk images. File Marshal can analyze non-windows

disks by using third-party software to mount the non-Win-

dows image, or unpacking the files from the Unix disk on

a Windows disk, by using a utility such as tar or unzip.

We will also add support for ACLs and key modification

time in the registry library.

After incorporating featuresbased onfeedbackfromour beta

testers, we will release the File Marshal product in early 2008.

5 http://www.limewire.com.
Acknowledgements

This project was supported by Award No. 2006-DN-BX-K013

awarded by the National Institute of Justice, Office of Justice

Programs, US Department of Justice. The opinions, findings,

and conclusions or recommendations expressed in this

publication/program/exhibition are those of the author(s)

and do not necessarily reflect the views of the Department

of Justice.

r e f e r e n c e s

KaZAlyser. Sanderson forensics. Available from: <http://www.
sandersonforensics.com/kazalyser.htm>.

RCFL program annual report for fiscal year 2006. US Department
of Justice, Federal Bureau of Investigation. Downloaded on
May 16, 2007 from: <http://www.rcfl.gov/Downloads/
Documents/RCFL_Nat_Annual06.pdf>.

Dr. Frank Adelstein is the Technical Director of Computer Se-
curity at ATC-NY, and provides oversight and guidance to pro-
jects at ATC-NY relating to computer security. His areas of
expertise include digital forensics, intrusion detection, network-
ing, and wireless systems. He has co-authored a book on mo-
bile and pervasive computing. He received his GIAC Certified
Forensic Analyst certification in 2004. A recent research focus
is in the area of live forensics. He was the Principal Investigator
on a project that resulted in the OnLine Digital Forensic Suite�,
a live forensics tool. He is the vice-chair of the Digital Forensics
Research Workshop.

Dr. Robert A. Joyce is the Technical Director for Information
Management at ATC-NY. His research interests include distrib-
uted information storage and transformation, computer foren-
sics, image and video processing, network and media
security, visualization and design, and human–computer inter-
action. Since joining ATC-NY in 2002, he has led several re-
search and development efforts in the area of information
management and has made significant contributions to many
other projects within the organization. He was a substantial
contributor to the development of the OnLine Digital Forensic
Suite�.

http://www.sandersonforensics.com/kazalyser.htm
http://www.sandersonforensics.com/kazalyser.htm
http://www.rcfl.gov/Downloads/Documents/RCFL_Nat_Annual06.pdf
http://www.rcfl.gov/Downloads/Documents/RCFL_Nat_Annual06.pdf
http://www.limewire.com

	File Marshal: Automatic extraction of peer-to-peer data
	Introduction
	File Marshal
	Three phases of operation
	Logging and report generation
	Search function
	Registry library
	User interface
	Configuration file

	Current status and future plans
	Acknowledgements
	References

