
Visualization in testing a volatile memory forensic tool

Hajime Inoue*, Frank Adelstein, Robert A. Joyce

ATC-NY, Ithaca, NY, United States

Keywords:

Volatile memory

Memory forensics

OS X

Memory dump

Visualization

Dotplot

Density plot

a b s t r a c t

We have developed a tool to extract the contents of volatile memory of Apple Macs running

recent versions of OS X, which has not been possible since OS X 10.4. This paper recounts

our efforts to test the tool and introduces two visualization techniques for that purpose.

We also introduce four metrics for evaluating physical memory imagers: correctness,

completeness, speed, and the amount of “interference” an imager makes to the state of the

machine. We evaluate our tool by these metrics and then show visualization using dot-

plots, a technique borrowed from bioinformatics, can be used to reveal bugs in the

implementation and to evaluate correctness, completeness, and the amount of interfer-

ence an imager has. We also introduce a visualization we call the density plot which shows

the density of repeated pages at various addresses within an image. We use these tech-

niques to evaluate our own tool, Apple’s earlier tools, and compare physical memory

images to the hibernation file.

ª 2011 Inoue, Adelstein & Joyce. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Most research on volatile memory forensics is on analysis of

the physical memory images, not on the process of recording

them. Researchers assume that operating systems provide

tools which reliably provide accurate images. This is,

however, a bad assumption.

The area of volatile memory forensics has been rapidly

growing since the 2005 DFRWS memory challenge (DFRWS,

2005). Previously, memory analysis consisted mostly of

string extraction. In recent years, tools like PTFinder

(Schuster, 2007) and Volatility (Waters, 2007) allow investiga-

tors to reconstruct what was in the contents of memory.

Halderman et al. were able to reconstruct encryption keys

from key-schedule components retrieved from volatile

memory (Halderman et al., 2009). With disk sizes continuing

to increase, as well as the increasing use of full-disk encryp-

tion, volatile memory forensics will play an increasingly

important role in digital investigations.

Volatile memory forensics has not been possible on recent

Apple Macs using only software.1 After Mac OS X 10.4, Apple

removed the /dev/mem file, which is the device used in all

Unix-like systems to access physical memory. Matthew Sui-

che suggested reimplementing the /dev/mem device as

a kernel extension at BlackHat 2010 (Suiche, 2010a). Suiche

never released his tools, so we wrote our own kernel exten-

sion which replaces this functionality.2

The Mac Memory Reader uses our new /dev/mem and

a new device we created called /dev/pmap which outputs the

physical memory map in the same format as the show-

bootermemorymap macro in the Apple Kernel Debug Kit

(Apple Corporation). Thismap is used by the reader to exclude

* Corresponding author.
E-mail addresses: hinoue@atc-nycorp.com (H. Inoue), fadelstein@atc-nycorp.com (F. Adelstein), rob@atc-nycorp.com (R.A. Joyce).

1 Physical memory can be acquired from Macs that support Firewire using the approach first demonstrated by Maximillian Dornseif
(Dornseif, 2004).

2 The Mac Memory Reader is available at http://cybermarshal.com/index.php/cyber-marshal-utilities or as part of the Mac Marshal
product.

ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ie r . com/ loca te /d i in

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 4 2eS 5 1

1742-2876/$ e see front matter ª 2011 Inoue, Adelstein & Joyce. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2011.05.006

addresses mapped to devices. The reader outputs a mach-o

core dump file which can be read by gdb. Once we imple-

mented the reader, however, we faced a problemeHow dowe

test it?

Recording volatile memory is often an awkward operation.

Valid memory address ranges are interleaved with device

memory which must not be readdreading device memory

often causes an immediate system crash. Operating systems

themselves often get it wrong, or have limitations that are not

obvious to users.

We are aware of three programs to record physical

memory on Windows XP: mdd (ManTech International

Corporation, 2009), win32dd (Suiche, 2010b), and the OnLine

Digital Forensic Suite memory dump tool (dumpmmf) (Cyber

Security Technologies, 2003). All three record physical

memory to a raw image file by accessing \Device \Phys-

icalMemory, theWindows equivalent of /dev/mem. We found

that mdd produces an image that is 118 pages smaller than the

image produced by win32dd or dumpmmf on a 4 GB XP

machine, and that image is only 3.3 GB. Non-server versions of

Windows XP do not support more than 4 GB of physical

address space, including devices, so there is only 3.3 GB of

addressable RAM (Russinovich, 2008). It is unclear why mdd

gives a different number of pages than win32dd or dumpmmmf.

Linux has a long history of problems with memory-backed

devices. In 2005, Steven Rostedt discovered that /dev/kmem,

the device used to access raw kernel memory, had been

broken “for some time” on Linux without anyone noticing

(Corbet, 2005).

Linux’s /dev/mem, while technically not broken, was

purposely crippled so that it does not behave like a regular file.

Several distributions use a configuration called STRICT_DEV-

MEM (previously NONPROMISC_DEVMEM). This prevents

/dev/mem from returning any results from locations that are

not from device or BIOS locations. Memory mapping is not

allowed at all with /dev/mem, except for device memory. Only

file system functions are allowed. Mapping a page of non-

device memory for some versions returns a page of all zeros

(Corbet et al., 2005), allowing programs which require

mapping /dev/mem to run, but not to run correctly. Similar to

our approach, Kollar and Anderson have independently

implemented kernel modules that restore /dev/mem func-

tionality (Kollar, 2010; Anderson, 2008).

On modern versions of OS X, no /dev/mem equivalent

exists. Apple removed the capability with the Intel version of

OS X 10.4. On 10.4 PowerPC /dev/mem only works correctly if

the computer is started using a kmem¼1 diag¼16 boot time

argument. Otherwise, reading /dev/mem will return pages of

content, but they will in no way be related to the address

asked for by the read operation.

It is clear that recording physical memory is difficult. An

operating system may not provide access to access physical

memory, there may be bugs in its implementation if it does,

and it may have restrictions that are difficult to discover or

understand.

Because no /dev/mem exists on recent versions of OS X, we

decided to implement one that could be used by forensics

investigators to record physical images before the machines

are powered down. Once we implemented it, we needed to

test it.

2. Evaluating physical memory imagers

We want our /dev/mem to record physical memory

completely, correctly, quickly, and with a minimum of inter-

ference with the system it is recording. What that actually

means has been interpreted differently by various tools’

authors. Below we describe our design decisions for our tool.

We define a physical memory image to be complete if all of

the physical address space which is not allocated to devices or

the BIOS is recorded.3 This does not account for all of the

physical memory in the machine. We also find that a small

amount of memory is not allocated in the physical memory

map. On a 8 GB MacBook Pro, for example, we find that 7703

physical pages (about 31 MB) are not addressable. This same

decisionwasmade by the authors ofWindows tools to recover

physical memory also, and is forced by the fact that memory

must be addressable to be accessible.

By correct, we mean that the physical address of a page in

the image was the actual physical address of that page in

memory. Because physical memory is not contiguous, we

chose not to write to raw files. Instead our tool writes to

a Mach object core dump file. Other tools, such as dumpmmmf,

record memory as raw binary files, inserting pages of zeros

when pages are not accessible.4 This creates differences

between the two types of files. First, there is an extra page of

header information in the object file. Second, in ranges that

are not in the memory map, raw files contain pages of zeros

where the object file omits them entirely. Finally, because our

tool records in the order of the physical memory map, not by

address, the pages are not always recorded in order of

ascending address.

Many physical memory analysis tools (such as Volatility),

depend on the physical memory image being self-consistent.

The image should appear as a snapshot of memory, and

therefore the tool should record the image as quickly as

possible. Our tool is designed to save the image to a removable

disk because it is fast. We try to minimize disruption in the

kernel file cache by turning off caching.5

Finally, the tool itself should not interfere with the

computer it is recording. It should minimize the amount of

memory it alters on the machine. Some tools are designed to

record over the network to minimize memory disruptions.

However, this takes significantly longer than recording to disk.

2.1. Testing our /dev/mem

We wanted to demonstrate that our physical memory imager

completely, correctly, and quickly images OS X systems while

minimally interfering with the system. This is a difficult

problem. Ideally, we would like to compare the output of our

3 Specifically, we record physical memory ranges tagged as type
1 (LoaderCode) through type 7 (available), as described by the OS
X PE_state.bootArgs->MemoryMap kernel variable (Singh, 2007).
It is possible to record BIOS code as well, and we are currently
evaluating whether to include it in a default image.

4 Such an approach is not feasible on 64-bit hardware; gaps
between physical memory ranges can be substantial.

5 Section 2.1 describes the side effects of the OS X file cache
incurred when using dd.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 4 2eS 5 1 S43

tool with one which is known to work. Unfortunately, there

are no existing ways to extract physical memory without

disturbing the system. The closest to “ground truth” is Apple’s

own /dev/mem, which works on OS X 10.4 PowerPC when

certain boot flags are used.

Therefore the best, most straightforward test is to generate

an image using Apple’s /dev/mem and then compare it with

one generated immediately after by our own tool. We per-

formed this comparison using an PowerPC G4 Power Mac

running OS X 10.4.11. We used dd and netcat to avoid file

caching problems to copy the physical memory image from

/dev/mem to anothermachine. Copying over the network took

severalminutes.We generated an image using our own tool as

soon as the network copy finished.

We then compared them. The dd-generated image was

131,072 pages; our tool’s image was 131,073 pages, which is

consistent, since ours has an extra page for the Mach object

header.We can conclude that the tool for 10.4 PPC is complete.

We found that 93% (121,916 of 131,072) of pages were identical

between the two images. Because copying perturbs the

system and copying the image over the network is quite slow,

allowing other processes to perturb the system during the

copy, this is not an unreasonable result. It gives us confidence

that, at least on OS X 10.4, our /dev/mem implementation is

correct.

We measured speed as well. Our code is faster than the

Apple implementation. We find that our implementation runs

on an eMac PowerPC G4 with 512 MB of memory in an average

of 14.2 (�0.2) seconds. The Apple implementation with dd

runs with an average of 16.4 (�0.2) seconds with 99% confi-

dence for a sample size of 5 runs each. In this experiment, dd

copied the image to the local disk, unlike in our earlier testing,

because a network copy takes several minutes.

Finally, we cannot know if our implementation minimally

perturbs with the system. Again, we can compare our imple-

mentation with Apple’s. We ran each implementation 5 times

in succession. We found that an average of 89,747 pages had

changed after each dd run, with a standard deviation of 302

pages, giving an average similarity of 32% between runs. Our

own toolmodified an average of 4406 pages between runswith

a standard deviation of 200 pages, giving an average similarity

of 97%. Clearly, dd should not be used to record physical

memory on OS X.6

This highlights an aspect of physical memory imaging that

has not been well noted before. Apple’s implementation of

/dev/mem, paired with dd, is complete, correct, and is within

15% of the speed of our imager implementation. However, it

causes the kernel’s file cache to overwrite most inactive

memorywhen it runs; ours causesmuch less interferencewith

physical memory.

2.2. Testing on recent versions of Mac OS X

Testing our physical memory imager on Intel Macs and more

recent versions of OS X is more difficult than on OS X 10.4

because there is no implementation we can compare with our

tool. We must rely on tests with OS X 10.4 and examining the

output on newer versions to see if it meets our expectations.

This is difficult because volatile memories can be very large.

For example, an 8 GB machine has 2,097,152 pagesdfar too

large to examine by hand.

We performed several tests on newer versions of OS X. We

knewwhere some content exists in physical memory because

the kernel symbol table gives addresses and the kernel’s

virtual to physicalmapping is predictable. These gave us some

evidence that our tool is correct.

We also performed what we call a string injection test. We

generated a kernel extension that contained a known string

that was unlikely to exist inmemory from other sources. After

we loaded the kext, we generated an image and searched for

the string. We were able to find the string. Unfortunately, we

found the string several times. On analysis, we found that this

is the correct behavior. The string can be copied into memory

by the file cache multiple times, since both the binary and

source contain the string. Viewing the kernel extension in an

editor can also create copies. As long as the pages the string is

embedded in are not identical, then the copies are legitimate.

We did this test on OS X 10.6 with both the 64-bit and 32-bit

kernels. We did not find true repeats (identical pages) with the

string on the 64-bit kernel. However, we did find that the

injected string did appear on two identical pages in the 32-bit

kernel. We could not conclude from this that there must be

a bug, because it is not uncommon to find identical pages. In

fact, we found that some pages are repeated hundreds or

thousands of times.

Suspecting a bug, we then extracted all the strings from the

32-bit image,which reduced its length dramatically, andmade

it easier to inspect. We observed that thousands of strings

were repeated in the same order and concluded that our 32-bit

/dev/mem was buggy.

On examination of the kernel source code, we found that

one of the structures we were using to hold the physical

Fig. 1 e Example dotplot.

6 While we provide our own imager, OS X’s dd utility can still be
used with our own /dev/mem implementation. We recommend
against this.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 4 2eS 5 1S44

address was a 32-bit value in the 32-bit kernel and was over-

flowing, which caused problem on Macs with physical

memory addressed over the 4 GB boundary. This is common,

even on machines with less than 4 GB of RAM.

After fixing that bug, we wanted to be confident that there

were no others.With no ground truth formore recent, relevant

OS X versions, and the huge size of current memories making

manual inspection impossible, we turned to visualization.

3. Visualizing physical memory

We wanted a way to visualize the contents of hundreds or

thousands ofmegabytes of memory in a way that would allow

us to see unknown, but systematic errors in our imple-

mentation. As Lyle notes, most errors in forensic tools are

systematic, and should lead to patterns (Lyle, 2010). We

therefore turned to a visualization method used in bio-

informatics called a dotplot.

Dotplots are used to visualize the similarity matrix of two

sequences. The similarity matrix is thematrix of scores which

express the similarity between the two sequences at each

point in the sequence. Dotplots are primarily used in bio-

informatics to show similarities between the genetic

sequences of proteins.

For our purposes, we use the same sequence to examine

self-similarity. Biologists do this to find similarities between

regions of a single protein. Fig. 1 shows a small dotplot using

an alphabet of four symbols. The region signifying the

similarity between two symbols is black if the symbols are

identical and white if they are not. Because we are calculating

self-similarity, there will always be a diagonal black line from

the upper left to lower right. Other lines denote copied regions,

such as the repeated “abcd” sequence. Blocks show regions

where the same symbol is repeated (“aaaa”). Inversions show

where symbols are copied in reverse order (“abcd” vs “dcba”).

In our dotplots, the quantum of similarity is the page. We

define similarity by comparing the SHA-1 hashes of pages.

Thus, two pages are similar only if they are identical. Because

there are far more pages in our memory images than pixels in

the dotplot, we use a black-body radiation palette to show the

relative similarity of a region. If a region is entirely filled with

0 bytes, it is blue.7 The value of the pixel is calculated by

dividing the sum of all similar pages assigned to the pixel by

the total number of pages assigned to the pixel. This is then

normalized by dividing each pixel’s value with the maximum

similarity value found in the entirematrix. To summarize, the

more similar pages in a region assigned to a pixel, the brighter

the its color. For clarity, in the gray-scale version of this paper

the palette is inverted in some figures.

Forefficiency,wesampleregionswhengeneratingdotplotsof

large images (>1 GB). If an image contains 2,097,152pages (8 GB),

a non-sampled similarity matrix requires 4,398,046,511,104 (242)

Fig. 2 e Dotplot of a correct image on OS X 10.6 with a 32-bit kernel with zero and one-pages removed (palette inverted).

7 A full-color version of this paper is available at http://
cybermarshal.com/index.php/cyber-marshal-utilities.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 4 2eS 5 1 S45

comparisons, or 4,194,304 (2048� 2048) comparisons per pixel

for a dotplot 1024 pixels wide. Because small differences in

values cannot be distinguished in a single pixel, sampling

reduces execution time dramatically without visibly changing

the output. We usually sample about 10% of the similarities

before assigning a value to a pixel.

For dotplots of smaller images there is no need to sample.

A dotplot of a 512 MB image takes several minutes on our Intel

Core 2 2.66 GHz machine without sampling. The dotplot of an

8 GB image takes many hours without sampling.

3.1. The 32-bit kernel bug

Self-similarity reveals systematic errors in our physical

memory images. For example, our 32-bit overflow bug is

immediately revealed by a dotplot visualization. The four

repeated boxes in the upper left of Fig. 5(a) indicate that a large

region ofmemory has been repeated (the first box starts at the

origin and uses about a third of the address space). In Fig. 5(b)

we have removed zero-pages (pages that contain all zeros) and

one-pages (pages where each byte is 0xff), which are

repeated throughout memory. In this image, many of these

pages were found high in memory, and therefore little of the

region resulting in the black box in the lower right of (a) is

shown. With the pages removed, the diagonal lines make it

easy to see that a region has been copied.

The density plot, Fig. 5(c) is also revealing. This is a visual-

ization method that has not been described before to our

knowledge. We use a black-body palette to indicate the

quantity of pages with a particular hash value in a region of

memory. In our dotplots, we calculate the histogram of page

hashes and then plot the density plots of the 16most common

above and to the left of the axes. Each of the 16 rows is

a density plot, in order of decreasing frequency, starting from

the bottom (the bottom row represents the zero-page). Fig. 5(c)

is an enlarged version of the histogram density plot shown in

Fig. 5(a) that omits the higher addresses which are mostly

zero-pages. The two arrows above the plot indicate the copied

region.

Fig. 2 shows a correct dotplot. It was generated after

filtering out zero-pages and one-pages to make it clearer. This

diagram is almost entirely without similarity, with the

exception of the diagonal from top left to bottom right. This is

what we expect from an OS that is using memory efficiently.

Copied pages are wasted pages, since the same physical page

can be mapped to many different processes.

3.2. Visualization comparing our /dev/mem to Apple’s
/dev/mem

We then applied this visualization technique to our earlier

tests on OS X 10.4. The dotplot will visually display the

differences between Apple’s /dev/mem implementation and

our own. Fig. 6(a) and (b) shows the dotplot of the image

generated with Apple’s implementation and one generated by

our own tool, respectively. Except for section near the center,

Fig. 3 e A dotplot comparing the physical memory image of a OS X 10.6 MacBook Pro running the 64-bit kernel and

a hibernation file recorded immediately before the image. The memory image is first. The hibernation file has been

compacted and inactive memory replaced by the zero-page.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 4 2eS 5 1S46

the two appear similar. This is confirmed by Fig. 6(c), which is

a plot of the difference of the corresponding pixels in Fig. 6(a)

and (b). The “cross” indicates that most perturbation was

localized to a particular physical region.

In Fig. 6(d) and (e), we show a gray-scale density plot of the

most frequent pages from the images used to produce Fig. 6(a)

and (b). This also clearly shows the similarity. Finally, Fig. 6(f)

shows a dotplot of the two images concatenated together.

A line denotes the individual images. The top right and bottom

left boxes show the similarity matrix of one image compared

with the other. The diagonal line demonstrates the substan-

tial similarity of the two images.

3.3. Comparisons to the hibernation file

Mac OS X stores the contents of RAM in a hibernation file,

/var/vm/sleepimage, when it enters the sleep state. The

hibernation file is often seen as an alternative to a physical

memory image. The hibernation file is by definition

complete, correct, and consistent. If the hibernation file was

created by making a copy of physical memory that was then

copied back when the machine resumed from sleep this

would be an excellent way to obtain physical memory

images. Unfortunately, this is not the case, as can be seen in

Fig. 3. The bottom right quadrant is blue, indicating all zero-

pages. The hibernation file compacts used memory in lower

address spaces. It also has more than 34% more zero-pages

than the image, indicating some or all inactive memory is

not recorded. This has tremendous forensic implications,

since it is memory from terminated processes or file caches

that is no longer needed but is useful to investigators.

Generating a hibernation file also fails the “minimize

interference” test in that it requires putting the machine to

sleep.

Fig. 4 e Dotplot of /dev/mem image from Intel OS X 10.4.

The large self-similar blocks clearly show it is broken

(palette inverted).

Fig. 5 e Depiction of our initial 32-bit overflow bug. The left dotplot (a) includes all pages. The right dotplot (b) has zero-pages

(all zeros) and one-pages (each byte is 0xff) removed before plotting. The bottom figure (c) shows a blowup of the density

plots of the most frequent pages. Arrows above the plot indicate the copied region (palette of all images is inverted).

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 4 2eS 5 1 S47

3.4. Visualizing dd images

The dd (data description) utility is the standard Unix utility for

copying from devices. This and similar utilities, such as the

aforementioned mdd and win32dd are used to make physical

memory images by copying from /dev/mem or its equivalent.

In Section 2.1 we compared our own implementation of

/dev/mem with Apple’s, using the native dd application as the

imager. We demonstrated that dd should not be used to when

recording the image to the local disk. The dotplot in Fig. 7(a)

reveals why. It is clear that dd creates four separate copies of

memory as images. This is not its behavior when recording

over the network, by piping the output of dd through a utility

such as netcat.We believe that dd onOSX does not turn off file

caching. OS X uses all available memory for its cache. The

utility reads a portion of memory and then writes it to a file.

The OS then caches these blocks in the file system cache,

which are apparently allocated linearly in physical memory.

When the copy reaches the file system cache, the copy is then

copied again. This process continues until the copying

completes.

These copies are not in-order or complete, however.

Fig. 7(b), an enlargement of the upper right copy, shows that

some copies end up like palindromes,mirrored about a center.

Fig. 6 e (a) Dotplot of Apple’s /dev/mem collected using dd and copied over the network. (b) Dotplot of an image generated

using our tool. (c) Plot showing the difference in values of each pixel between (a) and (b). (d) and (e) are density plots of the

physical memory images used in (a) and (b), respectively, after zero and one-pages have been removed. (f) is a dotplot made

from the file generated after concatenating the images from (a) and (b). The diagonal lines starting from the center of each

axis in (f) indicate that the two images are substantially similar. The cross in (c) indicates that most differences are in

a small, clustered region of pages (palette is inverted).

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 4 2eS 5 1S48

This creates a ‘v’ shape, seen repeatedly in the diagonal from

top left to bottom right. We did not see this behavior when

copying over the network, nor did we see it with win32dd or

mdd, which both copy to the local disk.

3.5. /dev/mem on Intel Mac OS X 10.4

Imaging on OS X can be broken in two different ways. In the

earlier section, we described how file caching can interfere

with the imaging. But /dev/mem is inherently broken without

certain boot flags, and is always broken on Intel-based Macs

running 10.4. We created an image using Apple’s /dev/mem

and used netcat to save it over the network on an Intel-based

iMac runningOSX 10.4. Fig. 4 shows its behavior. A single page

is repeated for large spans of memory. This is then replaced

with another repeated page. The number of pages in each

span seems somewhat random. This is consistent with the

algorithm in the kernel.8 For each read call from an applica-

tion to /dev/mem, the system randomly allocates a memory

page, and then copies the contents of the page to the read

buffer without initializing it. It then releases the page. Thus, it

can be quite random, although the same page seems to be

repeatedly selected for many megabytes, and then is often

selected again after being replaced by another page.

3.6. Visualizing string injection

In Section 2.1 we described using string injection as a method

for testing our /dev/mem implementation. Injecting a single

string into user space does not lead to interesting patterns in

dotplots. A pattern in a dotplot must span several pixels, and

must therefore be extremely large. Furthermore, pages in user

space (a virtual address space)may be randomly distributed in

physical address space, so that only random dots would result

from repeated insertions.

It may be worthwhile, however, to see if we can repeatedly

inject a large string into memory to test completeness. If

a process repeatedly injects a string until memory is exhaus-

ted, the string’s similarity should appear as low level of noise

in the dotplot, making the dotplot a solid color.

We wrote a program that repeatedly injected the complete

works of Shakespeare from the Gutenburg Project into

memory. This is one string of approximately 5.3 MB. The

dotplot in Fig. 8(a) is the result. Without magnification, it

appears that our original hypothesis is correct. Most of

memory is filled with pages of Shakespeare. Only a small

portion, typical from dotplots we have already made, stands

out as mostly unique pages. Under magnification, however,

we can determine that page allocation is not random. Fig. 8(b)

shows that page allocation is sequential, although it may be

both forwards (diagonals from upper left to lower right) or

backwards (diagonals from upper right to lower left).

4. Related work

Related work to this paper falls into related visualization

methods and forensics testing. There is nowork that we know

of that uses visualization to test digital forensic tools.

Dotplots have previously been used in computer science to

find code duplication in large software projects. This was first

suggested by Church and Helfman in 1992 (Church and

Helfman, 1993). More recently, Conti suggested using dotplots

Fig. 7 e Evidence of copying in imaging a system with dd. (a) is the complete dotplot; (b) is an excerpt of the top right.

Because OS X’s file system cache expands to all of inactive memory, large copies can result in many copies of one region

being imaged (palette is inverted).

8 The kernel source is publicly available at opensource.apple.
com.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 4 2eS 5 1 S49

for reverse engineering of binary files (Conti et al., 2008), based

on a talk by Kaminsky at Chaos Computer Congress in 2006.

Our application of dotplots differs from Church, Helfman,

and Conti’s work in that images of physical memory aremuch

larger than their datasets. We also believe that our use of

density plots of the most frequent pages has not been used

before as a visualization.

In terms of forensics, there is little related work in the area

of volatile memory forensics testing. Lyle’s work on disk

imagers comes the closest (Lyle, 2003; Lyle and Wozar, 2007).

His paper at DFRWS in 2010 discusses testing of forensic tools

in general. His relevant conclusions to this paper are that “no

general error rate exists,” “errors that occur in some critical

forensic activities are systematic in nature,” and “human

factors are important” (Lyle, 2010).

In investigating various memory imagers and in engi-

neering and testing our own, we found four criteria for eval-

uating them, systemic errors which completely corrupted the

images, and that an enormous amount of knowledge is

required for the investigator to use the tools properly.

5. Discussion and conclusion

This paper recounts the testing efforts we made after imple-

menting a physical memory imager for recent versions of Mac

OS X. We concluded that four metrics should be used to

evaluate imagers: completeness, correctness, speed (consis-

tency), and interference. Testing a tool by these criteria is

difficult when no ground truth exists for comparison.

We made several interesting observations during our

tests. First, it is difficult to get a good physical memory image.

On Windows, different tools record different sized images for

the same machine. On Linux, without knowing the kernel

version and configuration, one cannot be confident of the

image at all.

We turned to dotplots, a visualization technique borrowed

from bioinformatics, and page density plots, a novel visuali-

zation method, to test our tool. We found that on OS X, many

pages were the zero- or one-pages, and that filtering them out

led to better plots. We found that on older versions of OS X, an

image must be copied over the network; otherwise it is

contaminated with file cache activity. We also found that, on

any recent versions of OS X, the hibernation file is not a good

proxy for the physical memory image. By saving only memory

that is in use, it loses much forensically valuable information.

Finally, we found that dotplot visualization can provide infor-

mation about the underlying implementation and behavior of

the system it imagesdalthough physical pages do not have to

be allocated sequentially,we found that they often are, leading

to distinctive visual patterns in the dotplots.

Memory forensics is a rapidly evolving field. Because of the

difficulty of obtaining “ground truth” images, tools must use

a variety of testing and validationmethods to ensure the tools

meet the evaluation metrics we defined. We note there are

few published case studies that evaluate memory forensic

tools. We encourage tool developers and users to document

the testing of the tools, so that investigators have greater

confidence in them.

Acknowledgements

This project was supported in part by Award No. 2009-FD-CX-

K002 awarded by National Institute of Justice, Office of Justice

Programs, U.S. Department of Justice. The opinions, findings,

Fig. 8 e A dotplot (a) of the physical memory of an OS X 10.4 machine after a 5.3 MB string was repeatedly injected into its

memory. In (b), a magnified version of a small portion of (a) provides evidence that pages are allocated sequentially both

forward and backward to user-space applications.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 4 2eS 5 1S50

and conclusions or recommendations expressed in this

publication are those of the authors and do not necessarily

reflect the views of the Department of Justice.

r e f e r e n c e s

Anderson D. Crash. Technical Report. Red Hat Software, Inc.,
http://people.redhat.com/anderson/crash_whitepaper/; 2008.

Apple Corporation. Kernel debug kit. http://developer.apple.com/
hardwaredrivers/download/kerneldebugkits.html.

Church KW, Helfman JI. DotplXot: a program for exploring self-
similarity in millions of lines of text and code. The Journal of
Computational and Graphical Statistics 1993;2(2):153e74.

Conti G, Dean E, Sinda M, Sangster B. Visual reverse engineering
of binary and data files. In: Workshop on visualization for
computer security (VizSEC); 2008.

Corbet J. Who needs /dev/kmem?, http://lwn.net/Articles/147901/;
2005.

Corbet J, Rubini A, Kroah-Hartman G. Linux device drivers. 3rd ed.
O’Reilly and Associates; 2005.

Cyber Security Technologies. Online digital forensic suite, http://
www.cyberstc.com/; 2003.

DFRWS. DFRWS 2005 forensics challenge, http://www.dfrws.org/
2005/challenge/; 2005.

Dornseif M. Owned by an ipod, http://pi1.informatik.uni-
mannheim.de/filepool/presentations/0wned-by-an-ipod-
hacking-by-firewire.pdf; 2004.

Halderman JA, Schoen SD, Heninger N, Clarkson W, Paul W,
Calandrino JA, et al. Lest we remember: cold-boot attacks on
encryption keys. Commun ACM 2009;52(5):91e8.

Kollar I. Forensic RAM dump image analyzer. Master’s thesis,
Charles University in Prague; 2010.

Lyle JR. NIST CFTT: testing disk imaging tools. International
Journal of Digital Evidence 2003;1(4).

Lyle JR. If error rate is such a simple concept, why don’t I have one
for my forensic tool yet? In: The proceedings of the tenth
annual DFRWS conference, vol. 7; 2010. p. S135e9.

Lyle JR,WozarM. Issueswith imagingdrivescontaining faultysectors.
In: The proceedings of the 7th annual DFRWS conference; 2007.

ManTech International Corporation. mdd, http://sourceforge.net/
projects/mdd; 2009.

Russinovich M. Pushing the limits of windows: physical memory,
http://blogs.technet.com/b/markrussinovich/archive/2008/07/
21/3092070.aspx; 2008.

Schuster A. PTFinder version 0.3.05, http://www.computer.
forensikblog.de/en; 2007.

Singh A. Mac OS X internals: a systems approach. Addison-
Wesley; 2007.

Suiche M. Mac OS X physical memory analysis, www.blackhat.
com/presentations/bh-dc-10/Suiche_Matthieu/BlackHat-DC-
2010-Advanced-Mac-OS-X-Physical-Memory-Analysis-slides.
pdf; 2010a.

Suiche M. Moonsols windows memory toolkit, http://www.
moonsols.com/windows-memory-toolkit; 2010b.

Waters A. The volatility framework: volatile memory artifact
extraction utility framework, https://www.volatilesystems.
com/default/volatility; 2007.

Hajime Inoue is a Principal Scientist at ATC-NY. His research
interests include computer security, machine learning, and
programming language implementation.He receivedhis doctorate
in computer science from the University of New Mexico in 2005.

Frank Adelstein is a Senior Staff Scientist at ATC-NY, providing
oversight and guidance to projects relating to computer forensics
and security. His areas of expertise include digital forensics,
intrusion detection, networking, and wireless systems. He has co-
authored a book on mobile and pervasive computing. He received
his GIAC Certified Forensic Analyst certification in 2004. Dr.
Adelstein is the vice-chair of the Digital Forensics Research
Workshop (DFRWS).

Several projects in which he has been the principal investi-
gator have resulted in commercial tools, including LiveWire
Investigator/OnLine Digital Forensic Suite and P2P Marshal. He
has also co-created and conducted training in P2P forensics, live
forensics, and reverse engineering.

Robert A. Joyce is the Technical Director for Information
Management at ATC-NY. His research interests include distrib-
uted information storage and transformation, computer foren-
sics, image and video processing, network and media security,
visualization and design, and humanecomputer interaction.
Since joining ATC-NY in 2002, he has led or contributed to over 25
research and development efforts in the areas of information
management and computer forensics. He is currently the Prin-
cipal Investigator of the R&D effort behind Mac Marshal,
a computer forensic tool for Apple Macs. Dr. Joyce was
a substantial contributor to the development of the OnLine Digital
Forensic Suite, a live forensics tool. He also has significant expe-
rience in the fields of video and audio signal processing and in
systems programming and administration.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 4 2eS 5 1 S51

	 Visualization in testing a volatile memory forensic tool
	1 Introduction
	2 Evaluating physical memory imagers
	2.1 Testing our /dev/mem
	2.2 Testing on recent versions of Mac OS X

	3 Visualizing physical memory
	3.1 The 32-bit kernel bug
	3.2 Visualization comparing our /dev/mem to Apple’s /dev/mem
	3.3 Comparisons to the hibernation file
	3.4 Visualizing dd images
	3.5 /dev/mem on Intel Mac OS X 10.4
	3.6 Visualizing string injection

	4 Related work
	5 Discussion and conclusion
	 Acknowledgements
	 References

