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Abstract

Dynamic resource allocation is important for ensuring ef-
ficient network wutilization in Internet-based multimedia
content delivery system. To allow accurate network traf-
fic prediction in the case of video delivery, relevant infor-
mation based on video contents and the short term traffic
pattern has to be taken into account, while the inclusion of
non-relevant features will deterioriate the prediction per-
formance due to the “curse of dimensionality” problem.
In this work, we propose a neural network-based predic-
tion system and specifically address the determination of
relevant input features for the system. Ezperiments have
shown that the current system is capable of identifying
a highly relevant subset of features for traffic prediction
given a large number of video content and short-term net-
work traffic descriptors.

1. INTRODUCTION

Multimedia content delivery over the Internet requires
constant monitoring and re-allocation of network resources
over the bandwidth-limited channels for efficient network
utilization. This is especially the case for variable bit
rate (VBR) MPEG-compressed video streams, where the
bandwidth requirement varies as a function of the un-
derlying video contents. In general, video streams with
low-bit rates are associated with simple scenes compris-
ing of smooth regions and relatively little motions, while
high bit rate video streams are generated from frames de-
picting complex scene changes. As a result, an efficient
dynamic resource allocation strategy will have to take into
account the current short-term traffic pattern at the bit-
stream level, as well as any features in the stream which
implicitly describe the video contents, for effective pre-
diction of future requirements. On the other hand, an
inefficient strategy will either result in the over-allocation
of bandwidths for simple scenes which leads to inefficient
network utilization, or insufficient resource allocation for
complex scenes which leads to buffer overflow and packet
loss.

In view of the above requirements, we propose the
adoption of both video content features and short-term
traffic data for predicting future resource requirements.
Specifically, we partition a video stream into individual
camera shots [1], and the bandwidth renegotiation points
are selected near the beginning of each shot where the
above features are observed for a short time interval and

these are then used for predicting the required resources
for the entire shot. In other words, this strategy is based
on the assumption that the traffic patterns are relatively
constant within a single shot. The content features in the
form of a set of DCT coefficient and motion vector statis-
tics are extracted directly from the compressed domain
to allow low-delay processing. For the short term traffic
data, we adopt the measurements deriving from the de-
terministic bounding interval dependent (D-BIND) model
proposed by Knightley et.al [2], which describes the max-
imum allowed bit arrival rate for time intervals of various
lengths.

Due to the possible complex dependencies between
the long-term traffic patterns and the set of content and
short-term D-BIND features, the prediction system is im-
plemented in the form of a multilayer perceptron which
is capable of approximating complex mappings through a
training process [3]. Among the complete set of features,
it is also apparent that not all of them will be relevant for
traffic prediction. In fact, in the case of a limited number
of training samples, the inclusion of non-relevant features
will lead to the “curse of dimensionality” problem where
the sparseness of the samples in a high dimensional space
will lead to incorrect reconstruction of the desired map-
ping [3]. In view of this, we propose the adoption of the
sequential forward selection (SFS) approach [4] which in-
crementally constructs a sequence of feature subsets by
successively adding relevant features to those previously
selected. Due to the need for evaluating the relevancy of
the subsets, which normally requires iterative identifica-
tion of multiple mappings between the corresponding re-
duced feature spaces and the long term traffic patterns, we
adopt the general regression neural network (GRNN) [5]
for this purpose. Unlike alternative neural network mod-
els which require iterative learning, the parameters of the
GRNN model can be directly determined in a single pass
of training, which allows rapid evaluation of the individual
feature subsets in terms of their relevancies.

2. CONTENT AND TRAFFIC DESCRIPTORS

The original set of features is denoted as the index set
F = {1,...,N}. In this work, the set F' consists of 14
content descriptors and 4 short-term traffic descriptors
in the form of D-BIND measurements. In other words,
N = 18 and the features are numbered in such a way
that the subset F = {1,...,14} contains the content
descriptors and the subset F, = {15,...,18} contains



the D-BIND descriptors. For the content descriptors, we
have included features which describe both the spatial
and temporal characteristics of the video. Among those
in the first category is the spatial complexity measure as-
sociated with the I-frames in the MPEG stream, which is
defined as a specific weighted sum of the AC DCT coef-
ficient magnitudes in each block of the frames. Features
describing the temporal characteristics include the mean
and variance of the magnitudes of motion vectors (MV),
the covariance between the x and y-components of the
vectors, mean change in MV magnitudes over 2 P-frames,
and related features.

For the short term traffic descriptors, the D-BIND
measurements proposed by Knightley et.al [2] are adopted
which are defined as follows: if A[r,7 + t] denotes the
total number of bits received during the interval [r, 7 +¢],
we can define the empirical envelope B*(t), which is a
function of the interval length ¢, as the least upper bound
of the number of received bits over all possible values of
T, l.e.,

B*(t) = sup A[r, T + t] (1)
T

Given a specific discretization of the allowed time inter-
val lengths ¢, = 1,...,L, the empirical envelope func-
tion can be described as a vector B = [b1,...,by,... ,bL]T
where b, = B*(t;). The D-BIND descriptor is then de-
fined as the associated vector D = [r1,...,7,...,7z]7,
where the components r;,l = 1,...,L denote the bit ar-
rival rates 7, = b;/t; for each possible interval length ;.
Given the D-BIND vector D, we can thus characterize the
short-term network traffic by those components r; with
small indices [, and the long-term traffic pattern by those
r; associated with large indices. Our objective is to pre-
dict the long term D-BIND components from a judicious
combination of the short-term D-BIND components and
the previous content descriptors, such that an accurate
estimation of the required bandwidth over an extended
period can be achieved by briefly observing the content
and traffic characteristics at the beginning of that period.

Formally, a chosen subset of the content and traffic
descriptors are regarded as input features to the desired
prediction system. While we can choose a set of r; values
with large [ indices from the D-BIND vector and desig-
nate them as the desired output values, it was observed
that most of these component values are close to the av-
erage bit rate in the interval and are thus redundant. For
more efficient description, we perform principal compo-
nent analysis on the set of D-BIND vectors associated
with all the video shots, and then adopt the projections
of each D-BIND vector on to the first two principal com-
ponents as the long-term traffic descriptors.

3. FEATURE SELECTION

The importance of selecting the relevant subset from the
original feature set is closely related to the “curse of di-
mensionality” problem in function approximation, where
sample data points become increasingly sparse when the
dimensionality of the function domain increases, such that
the finite set of samples may not be adequate for charac-
terizing the original mapping [3]. In addition, the com-
putational requirement is usually greater for implement-
ing a high-dimensional mapping. To alleviate these prob-

lems, we reduce the dimensionality of the input domain
by choosing a relevant subset of features from the origi-
nal set. Specifically, we propose the adoption of an effi-
cient nonlinear one-pass selection procedure, the sequen-
tial forward selection (SFS) method, and a specialized
neural network model, the general regression neural net-
work (GRNN) [5] to achieve this purpose. Given the large
number of possible feature combinations from the origi-
nal set, the former represents a sub-optimal yet efficient
approach of sampling from the space of possible feature
subsets such that those which characterize the original
mapping with reasonably good accuracy can be quickly
identified. In addition, due to the need to apply iterative
function approximation techniques for mapping each can-
didate subset to the desired function outputs for relevancy
evaluation, the adoption of the GRNN model provides an
alternative approximation approach which, unlike other
NN models, requires only a single pass of training to al-
low rapid evaluation of the candidate subsets in terms of
their relevancies.

3.1. Sequential Forward Selection (SFS)

For feature selection, we formally denote the original set
with NV features as the index set FF = {1,...,N}. Our
purpose is to approximate the original mapping f : Dr C
RY — R® where xp = [z1,...,zx5]" € Dy are the vec-
tors in the input domain, using the alternative mapping
g: Dp C RM — RS, where F' = {i1,...,in} C F
is the relevant feature subset with M < N, and xp =
[€iy,...,xiy)" € Dpr are the vectors in the associated
function domain. To achieve this, the subset F’ has to
be chosen in such a way that f(xr) = g(xp/) for every
xp € D and xpr € Dpr.

The sequential forward selection procedure [4] allows
construction of a suitable feature subset starting from
a single feature. Specifically, given the original feature
set F', the SFS algorithm generates a sequence of subsets
F),,m =0,...N with associated cardinalities |F},| = m.
To begin with, we require a measure to evaluate the rel-
evancies of the candidate subsets F),. For this purpose,
we are usually given a set of training data (xr,p,yp),p =
1,..., P for the desired mapping, where xp, € Dp C RY
denotes each sample vector in the input domain incorpo-
rating the full set of features. To evaluate the relevancy
of a particular feature subset F),, we construct a map-
ping g which minimizes the following mean square error
measure

,
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over the set of reduced dimension vectors xpr , € Dpr C
R™. We can then regard the value Ep: as a measure of
the relevancy of F,.

Given the m-th feature subset Fy, = {1,...,im}, we
generate the (m + 1)-th relevant subset by individually
evaluating the suitability of each remaining feature in the
complement set ', = F — Fy, = {im+1,---,in}. For
each remaining feature i;,j =m+1,..., N, we form the
new subset G, ; as follows:

Gmi1,; =FnU{ij},j=m+1,...,N (3)



The (m + 1)-th relevant subset is then chosen from these
candidate subsets using the following criterion:

Fi1 = Ghypy j» where j° = argmin E¢ "y (4)
j m+1,

In this way, a nested sequence of feature subsets Fi C

. C F)y can be constructed, and the associated per-
formance measure values EF{ yeee ’EFJ’V indicate the rele-
vancy of the corresponding subsets. As a result, we can
select the subset containing the minimum number of fea-
tures and with its associated measure value lower than a
prescribed threshold.

3.2. General Regression Neural Network (GRNN)

The general regression neural network (GRNN) [5], which
is shown in Fig 1. is a special example of a radial ba-
sis function (RBF) network [3], in which the centers and
widths of the Gaussian kernels are represented as deter-
ministic functions of the training data. In other words, no
iterative training procedures are required to reconstruct
a mapping. Since one of the problems with the feature
selection process is the necessity to reconstruct gpr , usu-
ally by an iterative function approximation process, for
the evaluation of Ef: in Eq (2), the adoption of GRNN
will allow rapid evaluation of the relevancy of different
feature subsets for our current problem.

Network Output Y

| Network Input X

Figure 1: Architecture of GRNN

To carry out function approximation using GRNN,
we are given a set of sample observations (xp,yp),p =
1,..., P from the original function. We then assign each
input vector x, as the center of a corresponding Gaussian
kernel in the network. For an arbitrary input vector x,
the output of the p-th RBF unit is given by

(x = %p) " (x = %)

Bp =exp [— 252 (5)
where o is a user-specified smoothing parameter. The
estimated function output y for x is then given by the

following convex combination:
P P
y=Zapyp, ogapgl,za,,=1 (6)
p=1 p=1

where the coefficients o, are defined as a, = 8,/ Z:’=1 Bp,
p=1,...,P. Intuitively, the GRNN performs interpola-
tion by linearly combining the given training outputs y,.
If the current input vector x is close to one of the training
input xp in a Euclidean sense, the corresponding coeffi-
cient ay given by Eq (6) will also become large, and the
estimated output y will be close to the desired output y,
for x,, which is a reasonable construction. On the other
hand, those sample points which are far away from x do
not appreciably contribute to the summation due to the
exponentially decaying weighting function o,.

4. EXPERIMENTAL RESULTS

In this section, we apply the SF'S technique to select fea-
ture subsets from the original set of 4 short-term D-BIND
features and 14 content features, and the GRNN to eval-
uate their relevancies. Our experiments are performed
on a set of 3 video sequences digitized from cable televi-
sion at 30 frames per second. Using the automatic shot
boundary detection algorithm in [1], 177 shots are identi-
fied and features associated with each shot are extracted.
We plot the error values for each subset F), in Fig. 2,
where the numbers in the horizontal axis correspond to
the index of the new features selected in each SFS trial.
It is seen that the error curve exhibits a distinct mini-
mum point at the feature subset F§, which in our case
corresponds to the index subset {1,6,15,16,17,18}. A
possible interpretation of this minimum is that, given the
limited number of training samples and their increasing
sparseness in high-dimensional spaces, the simple GRNN
model, which does not incorporate any explicit trainable
parameters, will find it increasingly difficult to character-
ize the mapping beyond a certain maximum number of
features, and the error starts to rise beyond this point.
As a result, it is natural to adopt F§ as a first approxima-
tion to our relevant feature subset due to the associated
small error value and the limited training set size. Among
the selected features, it is observed that all the four short-
term D-BIND descriptors are included, which implies that
the short-term traffic statistics are essential for predicting
the long-term traffic patterns. It is next observed that the
complexity feature associated with the I-frames (feature
1) and the mean change in magnitude of the motion vec-
tors over 2 P-frames (feature 6) are also important for
prediction.

To further verify the feature selection results, we im-
plement a complete traffic prediction system in the form
of a multilayer perceptron. The input consists of the pre-
viously selected features observed over a short period at
the beginning of each video shot. The output describes
the long-term traffic pattern in the form of the first two
principal component projections of the complete D-BIND
vector over the entire shot. The back propagation (BP)
algorithm is applied to determine the weights and biases
of the network. Among the 177 shots, the first 50 shots are
used for training and the rest for testing. We have listed
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Figure 2: Error plot for SFS/GRNN feature selection

the prediction mean square error in normalized units for
different number of hidden nodes in Table 1. For the pur-
pose of comparison, we have also included the prediction
results by randomly choosing 2 sets of 6 features from
the original 18 (indicated by RS1 and RS2 in the table).
We can observe that the 6 features selected by SFS and
GRNN achieve the smallest error in each case. In addi-
tion, we also notice that increasing the number of hidden
nodes from 10 to 20 does not significantly improve the
prediction results, and for some particular feature com-
binations the prediction error even increases for a large
hidden layer, indicating the possibility of overfitting.

| Subset | no.of units | MSE (15t Pca) | MSE (1st42nd PCA) |

Fj 10 0.0238 0.0277
RS1 10 0.0559 0.0695
RS 2 10 0.0426 0.0545

D-BIND 10 0.0247 0.0281

F 20 0.0232 0.0268
RS1 20 0.0579 0.0719
RS 2 20 0.0488 0.0617

D-BIND 20 0.0244 0.0279

Table 1: Prediction results using MLP

From these results, we can conclude that the SFS/GRNN

selection mechanism is capable of identifying the most im-
portant features, in the form of the short-term D-BIND
statistics, for the current prediction problem. On the
other hand, we can observe that the addition of content
features to the D-BIND subset serve to refine the predic-
tion result.

Since the ranking of all D-BIND features are close
to the top of the feature list, it is reasonable to sug-
gest that most of the useful information for predicting
the future traffic is already embedded in these short-term
statistics. To confirm this, we have also included the pre-
diction results using the 4 short-term D-BIND features

only. We can observe that the resulting errors are only
slightly greater than those of the original selected subset
Fj, indicating that these short-term features are the most
essential for predicting the long term network traffic.

5. CONCLUSION

We have proposed a neural network-based traffic predic-
tion strategy for dynamic resource allocation in video trans-
mission systems. Specifically, the problem of determining
the relevant input features for the prediction system is
addressed. For this purpose, we adopt the SFS method
to construct a sequence of feature subsets, and the GRNN
to allow the efficient evaluation of the relevancies of these
subsets without requiring iterative training. The full pre-
diction system is implemented in the form of a multilayer
perceptron with the previously selected features as net-
work inputs. From the experimental results, it was ob-
served that the combined SFS/GRNN selection strategy
is capable of identifying the short-term D-BIND statistics
as the most important features for the current prediction
problem. It was also seen that the addition of content
features serve to refine the prediction result. For future
research, we propose to investigate complementary ap-
proaches for selecting additional content features along
the lines of [6] and [7] for further prediction improve-
ment. This is in view of our observation that, during
the feature selection process, only a comparatively small
number of content features are currently included due to
the sensitivity of the simple GRNN model to the “curse
of dimensionality” problem beyond the minimum point in
Fig. 2, while it may be the case that some of the remain-
ing content features will be useful for prediction in the full
system.
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