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ABSTRACT

Dynamic resource allocation is critical in the transmission
of VBR video. Our study shows that content is one of the
major factors that controls the bandwidth of the video bit-
stream, yet content alone may not be sufficient in predicting
future traffic and in determining how much resource to re-
quest. A new framework of traffic prediction is proposed
in this paper, taking into account both content features and
available short-term bandwidth statistics.

1. INTRODUCTION

Transmission of digital video over bandwidth-limited shared
networks will become increasingly important in future In-
ternet and wireless communication. This is a very challeng-
ing problem, as we need to cope with the ever changing
system parameters, such as the number of data sources and
receivers, the bandwidth required by each source stream,
and the topology of the network itself. An optimal resource
allocation system must dynamically consider global strate-
gies (network-wide management) as well as local strategies
(e.g., access control for individual connections). In this pa-
per, we shall focus on the local strategies.

Bandwidth allocation and management for individual
streams generally must be done at the “edges” of the net-
work, in order to conserve computational resources on inter-
network switches. While offline systems could compute the
exact bandwidth characteristics of a stream in advance, in
many applications on-line processing is desired or even re-
quired. To keep delay and computational requirements low,
any information used to make bandwidth decisions should
be directly available in the compressed video stream. It is
desirable to have a resource management system that can
accurately estimate the required bandwidth in real-time.

Resource Renegotiation For VBR Video The resource
management of VBR video, which will become increas-
ingly popular due to its consistent perceptual quality, will be
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studied in this paper. The hallmark of VBR video is that its
bandwidth undergoes both short- and long-term changes, in
reaction to the complexity—and therefore, compressibility—
of the underlying video. Allocating a single constant amount
of bandwidth for a VBR stream will yield one of two results:
inefficient use of network resources, due to over-allocated
bandwidth, or large endpoint (and possibly internetwork)
buffers. The bandwidth requests made by the VBR source
must be periodically renegotiated in order to obtain high
network utilization and low delay.

Conventional approaches renegotiate resources accord-
ing to changes in bitstream level statistics [1]. The connec-
tion between previous traffic and the future traffic are para-
metrically modeled in work such as [2, 3], and references
therein. Content-based approaches have been introduced,
motivated by the high correlation between long-term traf-
fic characteristics and video content [4, 5]. We shall show
that while content is a major factor in determining the band-
width, content alone may not be sufficient for predicting fu-
ture traffic and in estimating how much resource to request.
More precisely, we shall look at two issues: (1) at which
points the bandwidth should be renegotiated, and (2) how
much bandwidth to ask for at any given point.

Bandwidth Renegotiation Points The on-line determina-
tion of bandwidth renegotiation points in VBR video gener-
ally falls into three categories: deterministic, traffic-based,
and content-based. Deterministically setting the renegotia-
tion points is the simplest method: bandwidth requests are
made every n frames, where n is an empirically determined
balance between request overhead and correlation of frame
bitrates. Traffic-based renegotiation, mentioned above, oc-
curs when a stream violates a previously negotiated band-
width request, or when utilization drops below some level.
Although traffic-based renegotiation tracks the real band-
width more closely, a single complex frame can cause the
requested bandwidth to remain elevated for some time. A
more “natural” set of renegotiation points is the set of shot
boundaries. By studying the bits used per frame in VBR
video, one sees that the most dramatic changes occur at the
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Fig. 1. Traffic prediction scenarios with different delay.

beginning of new camera shots [5]. Within a single shot, the
traffic characteristics are relatively constant1.

There exist many approaches to finding shot boundaries
in the compressed domain; we use the cut detector described
in [6]. This method uses a windowed relative threshold on
the sum of absolute pixel differences, and allows for fast,
on-line computation of renegotiation points.

Bandwidth Requests Per Interval The next step is to de-
termine how much resource to request at each renegotia-
tion point, without introducing significant delay. For natural
renegotiation points such as shot boundaries, previous traf-
fic generally cannot help to determine how much resource
to request as the traffic pattern has changed. With the re-
quirement of online processing in mind, one can predict the
traffic for the entire shot based on a short observation of
the beginning part, as illustrated in Figure 1. Renegotia-
tion is performed after the observation, and if granted, the
video will be transmitted using the newly reserved band-
width. Note that the observation will inevitably introduce
a short delay in renegotiation. The video may be transmit-
ted without delay, as in Fig. 1(a); with this approach, un-
expected bursty traffic may occur in the shaded period, but
it could be smoothed out by a network buffer if t is small.
For applications tolerating a short-delay, the video may be
transmitted with t-second delay according to Fig. 1(b) so
that the video traffic is always under control. In this paper,
we shall focus on case (b). Our proposed framework may
be extended to case (a).

A content-based prediction approach has been proposed
by Bocheck et al, consisting of training and testing stages[5].
In the training stage, content features are quantized into a
small number of levels (e.g., slow/medium/fast motion), and
every possible combination of significant features is labeled
as one content class for which the typical traffic pattern is
computed. After training, the content class of each shot in
the test video is identified by extracting the same features,
and the typical traffic pattern of the class is used as the pre-
dicted traffic for that shot. However, we notice some poten-
tial weaknesses of this approach. First, the specific predic-

1If a shot has a sudden change in content features, the change can be
considered a boundary as far as renegotiation is concerned. For simplicity,
we will ignore such intrashot “boundaries”.
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Fig. 2. Neural network based traffic prediction.

tion structure via classification can only feasibly incorpo-
rate a limited number of coarsely quantized features; each
feature is weighted equally, rather than by its relevance to
traffic. Second, prediction based solely on content may not
be applicable for video streams produced with different en-
coding algorithms or parameters. In addition, some useful
and readily available information, such as the exact band-
width statistics of the video in the observation periods, are
not incorporated.

2. NN-BASED TRAFFIC PREDICTION

We propose a new framework for traffic prediction, taking
into account both the content features and the bandwidth
statistics of the video in the observation periods. Prediction
results determine how much bandwidth resource to request
for the shot. Our goal is not only to enhance the prediction
accuracy, but also to evaluate the contribution by various in-
puts; systems with different tradeoffs for different applica-
tions can be constructed based on the evaluation. Although
the problem of predicting long-term or future traffic based
on short-term traffic can be handled via parametric model-
ing, it is not easy to come up with a simple and effective
parametric model when incorporating content features. For
this reason, we use a neural network (NN) to accomplish the
prediction task (Figure 2). The input to the neural network
consists of content features and traffic descriptors from the
observation period. The output is the traffic descriptor for
the entire shot. We use a 2-layer neural network and apply
a back-propagation approach in supervised training [7].

Content Features Four content features are extracted from
the initial frames of a shot to form the content-derived inputs
of the neural network. The first, I frame spatial complex-
ity, directly affects peak bandwidth requirements for future
I frames in the shot (and indirectly, P and B frames). The
spatial complexity can be estimated using a weighted sum
of the magnitudes of the AC coefficients for each block.

Motion vectors from adjacent P frames are subtracted to
form “acceleration” vectors, the mean magnitude of which
forms our second content feature,

‖accel‖ =
1

MN

∑

i,j

‖�mk(i, j) − �mk−1(i, j)‖ (1)



where �mk(i, j) is the forward motion vector for macroblock
(i, j) of frame k, and M and N are the frame dimensions
in macroblocks. A high value of this mean indicates that
the motion in the video is not simple, and that the residue
frames will become increasingly complex (thus requiring
more bits). Similarly, the mean magnitude of the motion
vectors offers a measure of how much motion compensation
is needed (and therefore, how complex the residue frames
are likely to be). Finally, the (spatial) covariance of the x
and y motion vector components is measured.

These features were selected from a set of candidate
compressed-domain content features according to the fol-
lowing evaluation. In the first step, video shots are classified
into k traffic clusters based on a specific traffic descriptor.
Classification can be done via K-means, E-M, or other al-
gorithms. In the second step, a consistency measure C for
each feature is computed:

C =
mean inter-class distance
mean intra-class distance

(2)

A good feature will have small intra-class distance and large
inter-class distance, yielding a large consistency measure2.
The above four features give the largest C values (in de-
creasing order as presented) among about a dozen candidate
features. Other novel features could be used, insofar as they
give large C values.

Video Traffic Descriptors Many traffic descriptors have
been proposed in the literature. Among them, peak rate and
average rate are two very simple ones, but they do not cap-
ture the traffic patterns over different time scales. To over-
come this problem, Knightly et al proposed the D-BIND
descriptor for deterministic service, which provides a per-
formance guarantee for the worst case [8]. D-BIND, or the
deterministic bounding interval dependent model, is essen-
tially a vector containing the maximum allowed arrival rate
for various intervals. It is defined as follows: Let A[τ, τ +
t] be the cumulative number of bits arriving during the t-
length interval beginning at time τ . The tightest bound over
all time, called the empirical envelope, is

B∗(t) = sup A[τ, τ + t] (3)

A piecewise-linear bounding function BWT is constructed,
where WT = {(qk, tk)|k = 1, 2, ..., p} is the vector of bit
arrival and interval pairs. Given a set of tk, the tightest func-
tion is denoted B∗

WT
. The D-BIND descriptor is usually

expressed in terms of arrival rates, RT = {(rk, tk)|k =
1, 2, ..., p}, where rk = qk/tk. This descriptor captures
both the short-term burstiness and the long-term traffic char-
acteristics of a video segment, while being relatively simple
to implement in admission control and policing.

2The consistency measure used here only considers features that are
related to traffic descriptors in a monotonic way.
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Fig. 3. Overall structure of the VBR resource predictor.

As a proof-of-concept, we use D-BIND descriptors and
deterministic service in our tests, though the proposed frame-
work is applicable to others policies. Fixing [t1, ..., tp], D-
BIND can be described by a vector [r1, ..., rp]. r1 through
r4 of the short-term observed traffic are the remaining in-
puts to our neural network (Fig. 2). When describing the
entire shot, the dimensionality of D-BIND is large and the
prediction complexity goes up. Such an increase is rather
wasteful as there is some redundancy in D-BIND. For ex-
ample, rk approaches the mean bitrate for large k. In order
to lessen redundancy and reduce prediction complexity, we
apply principal component analysis (PCA) to D-BIND and
use the first N principal components as traffic descriptors.
The neural network will then predict these N values. The
overall system structure is illustrated in Figure 3.

3. EXPERIMENTAL RESULTS

We shall demonstrate the performance of our proposed frame-
work by comparing the link utilization with a previously
proposed bitstream level approach. We also evaluate the
contribution of video content and bandwidth statistics of the
short observation periods to traffic prediction. Our experi-
ments are performed on a 13175-frame video (about 7 min-
utes) digitized from cable television at 30 fps. The video
consists of a fast-action documentary segment from “The
Oprah Winfrey Show” and clips of the ABC series “The
Practice.” It is encoded via MPEG-1 VBR of a fixed quan-
tization step size, with an average bit rate of 2.1Mbps.

Link Utilization The R-VBR scheme, a heuristic renego-
tation algorithm using D-BIND descriptors, was proposed
in [1]. It raises the reserved bandwidth (described by D-
BIND) by a factor α when the real bandwith exceeds the
current reservation, and lowers it by a factor β when the
real bandwidth remains below the reserved resource for K
frames. The average R-VBR renegotiation frequency is de-
termined by (α, β, K). In contrast, our proposed scheme
uses the shot boundaries, obtained from content-based tem-
poral segmentation, as renegotiation points. 177 shots are
identifed in the sample video. Bandwidth reservations are
comprised of two D-BIND principal components from our
neural network output. The neural network is trained by 100
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Fig. 4. Network utilization for multiplexed sources.

sweeps with data from the first 50 shots.
Link utilization is obtained by trace-driven simulation,

similar to that described in [5]. Multiple video sources,
based on the above described sample video but with random
starting points, are multiplexed into a T3 line (link speed of
45 Mbps). The simulation results are shown in Figure 4.
With the three sets of parameters speficied, renegotiation
requests from R-VBR were generated at average intervals
of 0.81, 1.54, and 2.23 seconds. The corresponding utiliza-
tions are shown in the dashed curves. The horizontal line
shows the utilization if the peak bandwidth were allocated
to each sequence. The upper solid curve is the utilization of
our proposed scheme, which renegotiates once every 2.48
seconds on average. Our proposal outperforms the R-VBR
scheme of similar renegotiation frequency by 18%, and by
9% against the R-VBR with tripled reneogtiation frequency.

MSE of Traffic Prediction We compared the prediction
MSE under four different strategies, keeping in mind that
overestimation of shot D-BIND descriptors could lower uti-
lization, while underestimation would degrade QoS. With
respect to renegotiation points, we consider: (A) using equal-
length request intervals (one request every 75 frames, which
is the average shot length), and (B) using shot boundaries
from temporal segmentation. We also consider three dif-
ferent neural network inputs for traffic prediction, all based
on statistics from the observation intervals: (I) the 4 content
features, (II) the 4-dimensional D-BIND, and (III) both con-
tent and D-BIND. The MSE values are shown in Figure 5.
Comparing the two leftmost columns, (A-III) and (B-III),
we observe that (B-III) gives much smaller MSE, meaning
that content-based renegotiation points are by far superior
to non-content-based ones. Comparing the three rightmost
columns, we see that short-term traffic (B-II) gives better
prediction than content features alone (B-I). We also find
that using both the content and short-term bandwidth of the
observation periods (B-III) is only marginally better than
using short-term bandwidth alone (B-II). This implies that
most of the useful traffic information in content features is
already inherent in very short-term bandwidth statistics.
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4. CONCLUSION AND FUTURE RESEARCH

We have proposed a new framework for resource alloca-
tion of VBR video. According to our preliminary experi-
ments, we found that (1) for determining optimal renego-
tiation points, a content-based approach is preferred over
non-content-based methods; (2) in traffic prediction, using
short-term bandwidth statistics as neural network inputs is
more effective than using content. Further progress could
be made by examining less conservative traffic descriptors
and admission control policies, as well as a wider variety of
video content and bitrates.
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