Content-Based Temporal Processing of Video

Rob Joyce
Princeton University
August 5, 2002

Advisor: Bede Liu
Readers: Wayne Wolf, Bradley Dickinson
Motivation

• Much of the “content” information we want to extract from video is temporal

• Benefits in
 - Transmission
 - Browsing
 - Search engines
 - Compression / transcoding

• Manual annotation often impractical
 - Live streams
 - Multi-stream setups
 - Low-budget productions
 - One-time use

• Temporal info allows for “assisted” manual annotation
Thesis Outline

- Gradual Transition Detection in Video
- VBR Bandwidth Prediction
- Multimodal Processing Issues
- Association Matrices
- Temporal Structure
- Hierarchical Visualization
- Conclusions & Future Work
Gradual Transition Detection

Gradually change every pixel in the same way

Abruptly change evolving subsets of pixels

Dissolve / Fade

\[f_k(x, y) = \alpha_k h_k(x, y) + (1 - \alpha_k) g_k(x, y) \]

Compute correlations of frame differences; will be 1 during ideal dissolves.

“Wipe”

\[F_k(p) = \frac{||I_k|| + E_{G,k}(p)}{N} G_k(p) + \left(1 - \frac{||I_k|| + E_{H,k}(p)}{N}\right) H_k(p) \]

Compute correlations of frame histogram differences; will be 1 during ideal wipes.

VBR Bandwidth Prediction

- Use shot boundaries as renegotiation points \cite{Bocheck98}
 - Traffic after boundary has little relation to that before
- Use short-term observation of traffic and content statistics (AC coeffs., MV magnitudes, etc.)
- Determine traffic descriptor with neural network:

\[\text{traffic prediction neural network} \]

• Multimodal Processing (segment distance metrics, norm.)
• Association Matrices (representation, sequence det.)
• Temporal Structure (transitive links, threading)
• Hierarchical Visualization
Multimodal Processing

- Segment audio & video independently
- Audio segmentation: speaker-based [Gish, Wyse, Siegler ’92-’97]
 Difficult without speaker training, due to variance in cepstral coeffs., plus addition of noise/music.

- Audio (speaker) segment distance metric:
 - Somewhat better, given segment boundaries
 - L^2 distance between cepstral mean of each segment
 - Still only detect ~30% of the same/“similar” speaker pairs

- Temporal video segment distance metric:
 - Distinct from a search engine shot distance metric
 - Does shot k proceed from j? Two key frames per shot:
 \[D_{j,k} = d(K_{exit}(j), K_{enter}(k)) \quad j < k \]
 \[\text{regional-histogram image distance} \]
A/V Distance Normalization

• Need to make meaningful comparisons between audio and video distance metrics

⇒ Normalize such that an audio segment distance of d is perceptually equivalent to a video distance of d
 – Determining exact mapping between measurements or statistics and perceived distance difficult

• Roughly quantize into three classes, then assign nominal normalized distances to each
 1. “Same”: same source in the same context (0.0).
 2. “Similar”: same source, recorded in different manners or different conditions (0.3).
 3. “Different”: No clear relationship between the segments (1.0).

• Detection problem; priors depend on separation
Association Matrices

- Want single representation of distance information using multiple modalities and metrics
- Audio distance matrices via short-term statistics [Foote '99]
 - Visualization of self-similarity, links, and common sequences
- Motivated by Foote’s distance matrices, formulate a general “association matrix” among segments of same & different modalities:

```
segment set vector \( S = [S_{m_1} \quad S_{m_2} \quad \ldots \quad S_{m_K}] \)

association matrix element \( a_{i,j} = D_{i,j}(s_i, s_j) \)
```
Simplified A/V Association Matrix

- From here on, use $K=2$:
 - m_1 is the two-key-frame video shot distance
 - m_2 is the cepstral-mean audio segment distance

$$A = \begin{bmatrix} D_{VV} & D_{AV}^T \\ D_{AV} & D_{AA} \end{bmatrix} \quad S = \begin{bmatrix} S_V & S_A \end{bmatrix}$$

- D_{AV} is 1 minus the fraction (of the shorter segment) that the corresponding audio and video segments overlap in time (other metrics possible…)
- D_{VV} and D_{AA} symmetric (for careful definition of m_1, m_2)
- D_{AV} almost all ones except near diagonal

- For comparisons to be meaningful, all distances must be perceptually normalized!
Example A/V Matrix

7 minute segment of the “Charlie Rose” PBS talk show

Video shots
1-10: conversation between host and guest 1
11: logo
12-15: host speaks
16-30: guest 2
31-38: mostly guest 2 speaking with game screens as video

Colors:
- “same”
- “similar”
- “different”
Time Normalized “Matrix”

Columns/rows scaled according to segment duration

0-55s: conversation between host and guest 1
55-65s: logo
65-110s: host speaks
110-300s: mostly guest 2 speaking with game screens as video

Colors:
- “same”
- “similar”
- “different”

FPO: Content-Based Temporal Processing of Video
Rob Joyce, Princeton University
Superimposed A/V Matrices
Superimposed A/V Matrices

8.5 minutes of CBS’s “The Late Show with David Letterman”

- Monologue
- Desk shots
- Interview (mostly host speaking)
- Pre-recorded sequence

Correlated Video Audio Both
Superimposed A/V Matrices

7.5 minutes of CBS-2 local evening news

[Graph showing superimposed A/V matrices with labels for Newsdesk, Anchor shots, Correlated Video, Audio, Both]
Idiomatic Sequence Detection

- Can interpret local temporal properties of streams as matrix properties, allowing easy detection algorithms

E.g.:

DIALOG

ACTION

- “different” segment pairs (+0.5)
- “same” segment pairs (-0.5)
- don’t care pairs (0.0)

Use regional correlations along diagonal to check (find largest subsequences matching prototype)
Idiomatic Sequence Detection

• Not all prototypes are “self-similar”:

 \[
 \begin{array}{c}
 \times \times \times \times \times \\
 \hline
 \times \times \times \times \times \\
 \end{array}
 \quad \text{then}
 \begin{array}{c}
 \times \times \times \times \times \\
 \hline
 \times \times \times \times \times \\
 \end{array}
 \]

 □ - “different”
 ■ - “same”
 × - don’t care

• Not all prototypes are “local”:

 \[
 \begin{array}{c}
 \times \times \times \times \times \\
 \hline
 \times \times \times \times \times \\
 \end{array}
 \quad \text{then}
 \begin{array}{c}
 \times \times \times \times \times \\
 \hline
 \times \times \times \times \times \\
 \end{array}
 \]

 Low-threshold
 (at least one seg.)
Sequence Detection Results

25 minutes of digitized television

<table>
<thead>
<tr>
<th>Idiomatic Sequence</th>
<th>against ground truth</th>
<th>against assoc. matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$P(D)$</td>
<td>#FA</td>
</tr>
<tr>
<td>Dialog</td>
<td>(video)</td>
<td>6/6 (100%)</td>
</tr>
<tr>
<td></td>
<td>(audio)</td>
<td>4/7 (57%)</td>
</tr>
<tr>
<td>Action</td>
<td>(video)</td>
<td>6/6 (100%)</td>
</tr>
<tr>
<td></td>
<td>(audio)</td>
<td>3/4 (75%)</td>
</tr>
<tr>
<td>Return to Anchor</td>
<td>(video)</td>
<td>5/11 (45%)</td>
</tr>
<tr>
<td></td>
<td>(audio)</td>
<td>0/2 (0%)</td>
</tr>
<tr>
<td>Character Introduction</td>
<td>(video)</td>
<td>15/23 (65%)</td>
</tr>
<tr>
<td></td>
<td>(audio)</td>
<td>11/19 (58%)</td>
</tr>
<tr>
<td>Character Departure</td>
<td>(video)</td>
<td>14/23 (61%)</td>
</tr>
<tr>
<td></td>
<td>(audio)</td>
<td>11/19 (58%)</td>
</tr>
<tr>
<td>Independent Event</td>
<td>(video)</td>
<td>2/3 (67%)</td>
</tr>
<tr>
<td></td>
<td>(audio)</td>
<td>8/13 (62%)</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>97/157 (62.2%)</td>
</tr>
</tbody>
</table>
Multimodal Temporal Structure

- Beyond idiomatic sequences, how does plot manifest itself in connections between a/v shots and scenes?
- Need some method of associating visually/aurally distinct segments that are topically related ⇒ transitivity (e.g., V1 → V4 → A3 → A9 → V6)
- Many streams don’t have admit a simple segmentation into shots and scenes as groups of shots (e.g., sports)
- Ideally, want to determine (transitive) chains of association to infer plot characteristics
Prior Joint A/V & Structure Work

- Summarization of video-only streams by clustering temporal sequences
 - Image-based dialog, action, etc. sequences [Yeung 1996]
 - Motion/histogram-based clustering [Rui 1998]

- Detection and visualization of self-similarity in audio
 - Distance matrices from short-term statistics [Foote 1999]

- Use of video shot boundaries and audio
 - Coincidence of audio and video boundaries [Sundaram 2000]
 - Audio classification (speech, silence, music, “noise”) and heuristic rules to find scene breaks and commercials [Saraceno 1998]
 - Audio classification + low-resolution frames for dialog, action, “story” sequences [Saraceno 1999]
Association “Graphs”

- Transitive links between segments important

- Motivates graphical interpretation of assoc. matrices:
 - Each segment (audio or video) is a node
 - Edge weight between nodes is the normalized distance

- Shortest Path/Dijkstra algorithm: what sequence of events led from A to B?

- Breadth-first search: which segments are “related” to this one, ignoring the number/edge weights of intervening segments

- Possible edge/path restrictions:
 - Forward-time only, reverse-time only (causal)
 - Contiguous/overlapping segment pairs only (breaks bad)
 - Direct/transitive weights below some threshold (say 0.9)
Pruning Graphs

• Potentially large number of links
 – Problematic & misleading in plots, analysis
 – Even worse if transitive paths are added as “links”

• Use a “memory-based” model:
 For a given segment, claim that
 – The most recent same/similar segment is likely the first one recalled by a human viewer (even if via transitive links)
 – Segment introducing the type like the current one, or an important similar segment in the past, may also be recalled (former better for clustering, latter difficult to define)

• Implementation:
 – For each segment, find most recent same/similar segments using breadth-first search on edges below some threshold
 – Also run on time-reversed stream if possible (delayed causal impl. possible)
Plot Thread Model

• Ideally, the diverging and converging paths of the memory-based graph will follow the semantic chains of plot through the media stream.
• Aural/visual cues added by director help (detectable?)
• Call independent yet simultaneous chains of association “threads”:
• Merge/split nodes often particularly important
Threading Heuristic

• Assign thread numbers to nodes:
 – Start with the “memory-based” pruned association graph
 – If a node j has a single parent, and
 • The parent has only one child (j), assign j to the same thread as the parent
 • Otherwise, the parent is a split node, and assign j to a new thread
 – If a node j has a multiple parents (or none), assign j to a new thread

• This scheme over-allocates threads, but transitive links make it difficult in general to
 – Know if the child in a merge should be associated with a particular parent, or none at all (a new thread)
 – Know if the parent in a split should be associated with a particular child, or none at all (a separate thread)
Thread Reassignment

• To combat the over-allocation of thread numbers, re-use thread numbers where they are no longer used.
• Use greedy (fast but sub-optimal) procedure guaranteeing that once a thread starts, it stays on the same parallel line and is never interrupted:
 – Determine the first and last node number occupying each thread.
 – For each thread number \(t \), find the lowest thread number \(< t \) that has a last-occupancy time less than \(t \)'s first-occupancy time; if one exists, reassign \(t \) to this new (lower) thread and update the lower thread’s last-occupancy time.
 – Eliminate any unused thread numbers.
• May well put different “plot” threads on the same parallel line, but the alternative is unwieldy graphs.
Hierarchical Visualization

• Conflicting goals in visual summaries:
 – Should be compact (“at a glance”) and intuitive
 – Should be capable of answering rather detailed questions

• Naively plotting whole graphs/trees is unwieldy, even after the memory-based pruning algorithm
 ⇒ Use hierarchical methods

• Other goals:
 – Intuitively show temporal progression
 – Automatic graph layout
 – Clearly show which segments are concurrent
 – Concurrent plot “threads” should be in parallel
Prior Visualization Work

- Scene transition graphs and clustering of shots, semi-automatic graph layout [Yeung 1996]
- Linear browser with speaker tracks alongside, for editing applications [Toklu 2000]
- Hierarchical feature-presence vs. time plots for fixed or shot segments [Ponceleon 2001]
- Complementary iconic and episodic pair of interfaces (and associated semantic issues) [Davis 1994]
- More generally, multiple streams of cause & effect (non-video) [Tufte 1997]
Generating the Hierarchy

- Select nodes for display at each “level” of hierarchy
- When “zooming in” from a node at level l, present a level $l + 1$ graph centered on the selected node
 - Graph edges determined by memory-based transitive path search (including hidden nodes)
 - Allow user to easily pan to other areas, like a map
 - Alternative: show only nodes near the one clicked-on
- Rank nodes by “importance” to determine in which graphs they appear
 - Inclusion in idiomatic sequences, particularly introductions, merges, and splits
 - Alt.: Non-temporal characteristics (motion, audio volume, …)
- Level l graph includes all nodes of rank $\leq l$
Node Rankings

Our rank assignment:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>First and last audio and video segments</td>
</tr>
<tr>
<td>2-4</td>
<td>Character introduction segments</td>
</tr>
<tr>
<td>5-7</td>
<td>Path merge segments</td>
</tr>
<tr>
<td>8-10</td>
<td>Path split segments</td>
</tr>
<tr>
<td>11-13</td>
<td>Topic change sequences’ first segments (i.e., where the change is)</td>
</tr>
<tr>
<td>14-16</td>
<td>Return-to-anchor sequences’ first segments (i.e., the “anchor”)</td>
</tr>
<tr>
<td>17-19</td>
<td>Interlude/commercial sequences’ first and last segments</td>
</tr>
<tr>
<td>20-22</td>
<td>Character departure segments</td>
</tr>
<tr>
<td>23-25</td>
<td>Action sequences’ first and last segments</td>
</tr>
<tr>
<td>26-28</td>
<td>Dialog sequences’ first two segments (i.e., both participants)</td>
</tr>
<tr>
<td>29</td>
<td>Segments aligned in audio and video</td>
</tr>
<tr>
<td>30</td>
<td>Video shots >7 seconds and audio segments >10 seconds</td>
</tr>
</tbody>
</table>

(2-4: 2 for coincident audio and video, 3 for video only, 4 for audio only)
Rank Equalization

• May have too many ranks, or a number of empty ranks
• Set a constant growth factor γ: enforce that there are exactly $4^{\gamma^{k-1}}$ nodes of rank k
 – Order nodes by rank, shuffling nodes of equivalent rank
 – Select first 4 nodes as rank 1, next 4γ as rank 2, etc.
 – Highest rank may not be full, but corresponding hierarchy level contains all nodes

• Logarithmic nature flattens even the longest streams into a few hierarchy levels (≤ 8 for up to 1000 segs.)
• We select $\gamma = 2.0$
Graph Layout (Time)

- Intuitively show temporal progression & concurrence: use time as the horizontal dimension

 Constraints:
 - Minimum/fixed node size (to include thumbnail, times, etc.)
 - Don’t want shortest segment to force extremely wide graphs
 - Nodes should not overlap
 - Desire to align audio and video in time

 ⇒ time dimension will be nonlinear

- Algorithm:
 - First, pack all video nodes in order by start time, left to right
 - Place all audio nodes by interpolating video timestamps
 - Working from left to right, where two audio nodes overlap, shift all video and audio nodes to the right to make space
 - Use faint lines to indicate constant time intervals
Graph Layout (Vertical)

- Segments’ **vertical positions determined by thread numbers** (in each modality)
- For simplicity, place video and audio nodes independently, all video above all audio
- Cross-modality information is implicit, because each modality’s edges are determined using the memory-based transitive links
- Further cross-modality information: indicate overlapping audio/video segments explicitly with edges
Plotting the Graph

- DC+2AC thumbnails for video segments
- “Thumbnails” for audio segments?
- Incorporate other segment/edge info?
- Use scalable vector graphics (SVG) W3C standard for uniform web-based interface with easy panning
Hierarchical Graph Demo

SVG Graph Examples

Rank 3 (All Segments) Summary for nbcnews5

NBC Nightly News, June 21 1999

Stream duration: 56.92 seconds
Graph creation date: 28 Jun 2002
Hierarchy depth: 3 levels (zoom factor is 2x)

Video segments: 11
Audio segments: 6

Quick navigation: Top level summary | Show all segments | Highlight previously-selected segment

Click on a node to go deeper in the hierarchy, or hold down alt/option and drag to pan.

Red nodes are video shots, blue are audio (speaker) segments. Grid lines are percentages (in time) through the duration of the video.

Rob Joyce, robjoyce@princeton.edu, SDate: 2002/06/07 13:09:10 8
Summary

- Gradual transition detection in video: wipe/dissolve
- Application to VBR bandwidth prediction per shot
- “Perceptual” normalization of audio and video segment distances, multimodal cross-distances
- Association matrix representation of seg. distances
- Detection of idiomatic sequences from assoc. matrix
- Graph interpretation, incorporating transitive links
- Memory-based pruning, assignment to “plot” threads
- Node ranking ⇒ Hierarchical graph representation of multimedia streams
Some Future Directions

- Incorporation of long-term structure info in VBR bandwidth prediction (similar shots, similar traffic)
- Better audio segmentation, distance metrics
- More interesting cross-modality distance metrics (face detection/lip movement…?); other modalities
- Analysis of the effects of segmentation errors on the distance matrices and idiomatic sequence detection
- Smarter use of transitive links in threading
- Incorporate other information in node ranking (non-temporal statistics, DB lookup for characters, etc.)
Thanks!

Thanks to:

Profs. Bede Liu, Wayne Wolf, Bradley Dickinson, S-Y Kung

Contributors (discussion, ideas, testing/code):
Min Wu, Peng Yin, Scott Craver, Prof. Perry Cook

Graph Demo:
http://www.ee.princeton.edu/~robjoyce/res/svg/